Homogenisation of a sheared unit cell of textile composites

FEA and approximate inclusion model

Authors

  • Stepan V. Lomov Department of Metallurgy and Material Science, Katholieke Universiteit Leuven Kasteelpark Arenberg, 44, B-3001 Leuven, Belgium
  • Enrique Bernal Facultad de Ciencias, Univesity of Zaragoza, Pza. S. Fancisco, s/n, 50009 Zaragoza, Spain
  • Dmitry S. Ivanov Department of Metallurgy and Material Science, Katholieke Universiteit Leuven Kasteelpark Arenberg, 44, B-3001 Leuven, Belgium and Perm State Technical University Korolyova 6-109, 614 013 Perm, Russia
  • Sergey V. Kondratiev Department of Metallurgy and Material Science, Katholieke Universiteit Leuven Kasteelpark Arenberg, 44, B-3001 Leuven, Belgium
  • Ignaas Verpoest Department of Metallurgy and Material Science, Katholieke Universiteit Leuven Kasteelpark Arenberg, 44, B-3001 Leuven, Belgium

Keywords:

textile composites, homogenisation

Abstract

Meso-mechanical modelling of textile composites on the “meso” (unit cell) level provides information necessary to produce homogenised properties of the composite material (with the reinforcement deformed during draping), to be used in structural analysis on the “macro” (composite part) level. The input data for the meso-calculations include geometrical model of the sheared textile and properties of the fibres and matrix. Inclusion model proceeds then to an approximate description of the reinforcement as a set of stiff inclusions, representing local orientations of the fibers, and employs the Eshelby solution and Mori- Tanaka or self-consistent homogenisation scheme to calculate the effective stiffness matrix of the composite. Finite element modelling goes through stages of (1) converting the geometrical model into a solid model; (2) meshing; (3) applying periodic boundary conditions and (4) solving a set of models necessary to calculate the homogenised stiffness matrix. All these stages present specific challenges for the case of non-orthogonal translational symmetry of the problem, which are dealt with in the paper for two types of textile reinforcements: woven and non-crimp fabrics.

Downloads

Download data is not yet available.

References

Boisse P., Buet K., Gasser A., Launay J., “Meso/macro-mechanical behaviour of textile

reinforcements for thin composites”, Composites Science and Technology, Vol. 61, 2001,

pp. 395-401.

Carvelli V., Poggi C., “A numerical approach for the failure analysis of textile composites”,

Proceedings ICCM-14, San Diego, 2003, CD edition.

Chamis C. C., “Mechanics of composite materials: Past, present and future”, Journal of

Composites Technology and Research, Vol. 11, No. 1, 1989, pp. 3-14.

Eshelby J. D., “The determination of the elastic field of an ellipsoidal inclusion and related

problems”, Proceedings of Royal Society, Vol. A-241, 1957, pp. 376-396.

Huysmans G., Verpoest I., Van Houtte P., “A poly-inclusion approach for the elastic

modelling of knitted fabric composites”, Acta Materials, Vol. 46, No. 9, 1998, pp. 3003-

Huysmans G., Unified micromechanical models for textile composites, PhD, Department

MTM, K.U. Leuven, 2000.

Loendersloot R., Lomov S. V., Akkerman R., Verpoest I., “Architecture and permeability of

sheared carbon fibre non-crimp fabrics”, Proceedings of the 24th International SAMPE

Europe Conference, Ed.K. Drechsler, Paris, 2003a, pp. 141-148.

Loendersloot R., Thije R. H. W. t., Lomov S. V., Akkerman R., Verpoest I., “Geometry,

Compressibility and Porosity of Sheared Non-Crimp Fabrics”, Proceedings of the 14th

SiComp Conference, 2003b, CD edition.

Lomov S. V., Gusakov A. V., Huysmans G., Prodromou A., Verpoest I. “Textile geometry

preprocessor for meso-mechanical models of woven composites”, Composites Science

and Technology, Vol. 60, 2000a, pp. 2083-2095.

Lomov S. V., Verpoest I., “Compression of woven reinforcements: a mathematical model”,

Journal of Reinforced Plastics and Composites, Vol. 19, No. 16, 2000b, pp. 1329-1350

Lomov S. V., Huysmans G., Luo Y., Parnas R., Prodromou A., Verpoest I., Phelan F. R.

“Textile Composites Models: Integrating Strategies”, Composites, part A, Vol. 32, No. 10,

a, pp. 1379-1394.

Lomov S. V., Huysmans G., Verpoest I., “Hierarchy of textile structures and architecture of

fabric geometric models”, Textile Research Journal, Vol. 71, No. 6, 2001b, pp. 534-543.

Lomov S. V., Belov E. B., Bischoff T., Ghosh S. B., Truong Chi T., Verpoest I., “Carbon

composites based on multiaxial multiply stitched preforms, Part 1: Geometry of the

preform”, Composites part A, Vol. 33, No. 9, 2002a, pp. 1171-1183.

Lomov S. V., Nakai A., Parnas R. S., Bandyopadhyay Ghosh S., Verpoest I., “Experimental

and theoretical characterisation of the geometry of flat two- and three-axial braids”,

Composite forming simulation, Textile Research Journal, Vol. 72, No. 8, 2002b, pp. 706-

Lomov S. V., Verpoest I., Peeters T., Roose D., Zako M. “Nesting in textile laminates:

Geometrical modelling of the laminate”, Composites Science and Technology, Vol. 63,

No. 7, 2002c, pp. 993-1007.

Lomov S. V., Truong Chi T., Verpoest I., Peeters T., Roose V., Boisse P., Gasser A.,

“Mathematical modelling of internal geometry and deformability of woven preforms”,

International Journal of Forming Processes, Vol. 6, No. 3-4, 2003, pp. 413-442.

Lomov S. V., Van den Broucke B., Tumer F., Verpoest I., De Luka P., Dufort L. “Micromacro

structural analysis of textile composite parts”, Proceedings ECCM-11, Rodos,

, p. CD Edition.

Mori T., Tanaka K., “Average stress in matrix and average elastic energy of materials with

misfitting inclusions”, Acta Metall.Mater., Vol. 21, 1973, pp. 571-574.

Takano N., Ohnishi Y., Zako M., Nishiyabu K., “Microstructure-based deep-drawning

simulation of knitted fabric reinforced thermoplastics by homogenisation theory”,

International Journal of Solids and Structures, Vol. 38, 2001, pp. 6333-6356.

Truong Chi T., Lomov S. V., Verpoest I. “The mechanical properties of multiaxial multiply

carbon fabric reinforced Epoxy composites”, Proceedings of the 10th European

Conference on Composite Materials (ECCM-10), Ed.H. Sol and J. Degrieck. Brugge,

, p.CD edition.

Van den Broucke B., Tumer F., Lomov S. V., Verpoest I., De Luca P., Dufort L. “Micromacro

structural analysis of textile composite parts: Case study”, Proceedings of the 25th

International SAMPE Europe Conference, March 30th - April 1st., Paris, 2004, pp. 194-

Vettori M., Truong Chi T., Lomov S. V., Verpoest I. “Progressive damage characterization of

stitched, biaxial, multi-ply carbon fabrics composites”, Proceedings ECCM-11, Rodos,

, p. CD edition.

Whitcomb J., Chapman C. D., Tang X., “Derivation of boundary conditions for

micromechanics analyses of plain and satin woven composites”, Journal of Composite

Materials, Vol. 34, No. 9, 2000, pp. 724-747.

Woo K., Suh Y. W., “Low degree of homogenity due to phase shift for woven composites”,

Journal of Composites Technology & Research Vol. 23, No. 4, 2001, pp. 239-246.

Zako M., Uetsuji Y., Kurashiki T. “Finite element analysis of damaged woven fabric

composite materials”, Composites Science and Technology, Vol. 63, 2003, pp. 507-516.

Downloads

Published

2005-06-17

How to Cite

Lomov, S. V. ., Bernal, E. ., Ivanov, D. S. ., Kondratiev, S. V., & Verpoest, I. . (2005). Homogenisation of a sheared unit cell of textile composites: FEA and approximate inclusion model. European Journal of Computational Mechanics, 14(6-7), 709–728. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2181

Issue

Section

Original Article