Mechanics of woven fabrics using cruciform elements
Keywords:
woven fabric, cruciform, draping, forming, tensile, shearAbstract
This paper presents a cruciform element for finite element modelling of woven fabrics. Unlike shell elements, cruciform elements do not need special forms near curved boundaries. Additionally, cruciform elements represent the discrete nature of textile structures and ensure that the arms of the cruciform are parallel to the warp and weft directions. In this paper, stiffness matrices for three types of loading, biaxial tensile, in-plane shear and in-plane bending, have been derived. FE modelling with cruciform elements has been demonstrated for bias extension of a woven fabric near the fixed clamp region.
Downloads
References
Boisse P., Borr M., Buet K., Cherouat A., “Finite element simulations of textile composite
forming including the biaxial fabric behaviour”, Composites Part B, Vol. 28B, 1997,
pp. 453-464.
Boisse P., Daniel J., Gasser A., Hivet G., Soulat D., “Prise en compte du procédé de
fabrication dans la conception des structures composites minces”, Méchanique &
Industries, Vol. 1, 2000, pp. 303-311.
Boisse P., Gasser A., Hivet G., “Analyses of fabric tensile behaviour: determination of the
biaxial tension-strain surfaces and their use in forming simulations”, Composites Part A,
Vol. 32, 2001, pp. 395-1414.
Boubaker B.B., Haussy B., Ganghoffer J., Modèles discrets de tissues tissées: Analyse de
stabilité et de drapé, Comptes Rendus Méchanique, Vol. 330, 2002, pp. 871-877.
Chicurel R., Suppiger E., “Load-deflection analysis of fifers with plane crimp”, Textile
Research Journal, 1960, pp. 568-575.
Collier J.R., Collier B.J., O’Toole G., Sargand S.M., “Drape prediction by means of finite
element analysis”, Journal of the Textile Institute, Vol. 82, No. 1, 1991, pp. 96-102.
De Luca P., Lefébure P., Pickett AK., “Numerical and experimental investigation of some
press forming parameters of two fibre reinforced thermoplastics: APC2-AS4 and PEICETEX”,
Composites Part A, Vol. 29A, 1998, pp. 101-110.
Kilby W.F., “Planar stress-strain relationships in woven fabrics”, Journal of the Textile
Institute, Vol. 55, 1963, pp. 9-27.
Lamers E.A.D., Wijskamp S., Akkerman R., “Modelling of fabric draping: Finite elements
versus geometrical method”, 4th ESAFORM Conference on Material Forming, Liège,
Long A.C., Souter B.J., Robitaille F., “A fabric mechanics approach to draping of woven and
non-crimp reinforcements”, Proc.15th Annual Technical Conf., American Society for
Composites, Texas A&M University, USA, September 2000, pp. 76-83.
Lloyd D.W., “The analysis of complex fabric deformations”, Mechanics of flexible fibre
assemblies, NATO Advanced Study Institute Series, Sijthoff & Noordhoff, 1980, pp. 311-
Ramgulam R., Potluri P., “Tensile load deformation behaviour of woven Fabrics”,
Proceedings of 2004 ASME: International Mechanical Engineering Congress and R&D
Expo, November 13-19, 2004, Anaheim, Ca.
Sharma S.B., Sutcliffe M.P.F., “Draping of woven fabrics: Progressive drape model”, Plastics
Rubber and Composites, Vol. 32, 2003, pp. 57-64.
Sharma S.B., Sutcliffe M.P.F., “A simplified finite element model for draping of woven
material”, Composites Part A, Vol. 35, 2004, pp. 647-643.
Torbe I., “A cruciform element for the analysis of fabric structures”, Proceedings of Institute
of Mathematics, Conference on Finite Element Methods, Brunel University, 1975,
London, pp. 359-367.
Van West B.P., Pipes R.B., Keefe M., “A simulation of the draping of bi-directional fabrics over
arbitrary surfaces”, Journal of the Textile Institute, Vol. 81, No. 4, 1990, pp. 448-460.
Williams C.J.K., “Defining and designing curved flexible tensile surface structures”, The
Institute of Math and its Application Conference Series, University of Manchester, 1984.