Simulation of liquid composite molding processes using a generic mixed FE-SPH method
Keywords:
Smoothed Particle Hydrodynamics, finite elements, liquid composite molding, explicit numerical schemesAbstract
Composite manufacturing processes involve multi-scale phenomena. Equations governing mechanics, heat transfer and fluid flow dynamics can be derived in the scale of the problem to solve. This article focuses on addressing fluid flow simulation needs for Liquid Composite Molding processes using a generic mixed FE-SPH method. The SPH method is Lagrangian and models fluids as particles. The method has been proven to be suitable to simulate fluid flows. Special solutions have been developed for flow through porous media and non-Newtonian fluid flow. Numerical schemes for such solutions are also given. The implementation of the SPH algorithm within a structural finite element software facilitates simulation of fluid-structure for LCM processes. Several applications are presented and discussed.
Downloads
References
Achilleos E., Georgiou G., Hatzikiriakos S., “On numerical simulations of polymer extrusion
instabilities”, Appl. Rheol., Vol. 12, 2002, pp. 88-104.
Acheson J.A., Simacek P., Advani S.G., “The implications of fiber compaction and saturation
on fully coupled VARTM simulation”, Comp. Part A, 2004, Vol. 35, pp. 159-169.
Belov E.B., Lomov S.V., Verpoest I., Peters T., Roose D., Parnas R.S., Hoes K., Sol H.,
“Modelling of permeability of textile reinforcements: lattice Boltzmann method”, Comp.
Sci. Tech., Vol. 64, No. 7-8, 2004, pp. 1069-1080.
Binetruy C., Advani S.G., “Foam core deformation during liquid molding of sandwich:
Modelling and experimental analysis”, J. Sand. Struc. Mat., Vol. 5, No. 4, 2003, pp. 351-
Cha H., Lee I., Choi H.Y., “Industrial applications of PAM-SHOCK using SPH”, In: PAM
Users Conference in Korea HANPAM ’99, Seoul, November 15-16, 1999, pp. 253-265.
Comas-Cardona S., Groenenboom P.H.L., Binetruy C., Krawczak P., “A generic mixed FESPH
method to address hydro-mechanical coupling in liquid composite moulding
processes”, Comp. Part A, 2005, To be published.
Ellero M., Kroeger M., Hess S., “Viscoelastic flows studied by Smoothed Particle Dynamic”,
J. Non-Newtonian Fluid Mech., Vol. 105, 2002, pp. 35-51.
Farina A., Cocito P., Boretto G., “Flow in deformable porous media: Modelling and
simulations of compression moulding processes”, Mathl. Comput. Modelling, Vol. 26,
No. 11, 1997, pp. 1-15.
Gingold R.A., Monaghan J.J., “Smoothed particle hydrodynamics: Theory and application to
non-spherical stars”, Mon. Not. R. Astr. Soc., Vol. 181, 1977, pp. 375-389.
Groenenboom P.H.L., Copper cylinder impact at high velocity: Numerical Simulation using
SPH and Finite Elements in PAM-SHOCK, ESI internal report, 2002.
Groenenboom P.H.L., “Numerical simulation of 2D and 3D hypervelocity impact using the
SPH option in PAM-SHOCK”, Int. J. Impact Eng., Vol. 120, 1997, pp. 309-323.
Haack C., On the use of a Particle Method for Analyis of Fluid-structure Interaction, Sulzer
Innotech Report STR TB2000 014, June, 2000.
Han K., Lee L.J., Liou M., “Fibre mat deformation in liquid composite molding, II:
Modelling”, Polym. Comp., Vol. 14, No. 2, 1993, pp. 151-160.
Kang M.K., Lee W.I.; Hahn H.T., “Analysis of vacuum bag resin transfer molding process”,
Comp. Part A, Vol. 32, 2001, pp. 1553-1560.
Libersky L.D., Petschek A.G., Smooth Particle Hydrodynamics with strength of materials,
In: Trease H.E., Fritts M.J. and Crowley W.P. (Ed.), Advances in Free-Lagrange
Methods, June 1990, Lecture Notes in Physics, Vol. 395, Spinger, New York, 1991,
pp. 248.
Lucy L.B., “A Numerical Approach to the Testing of Fusion Process”, Astron. J., Vol. 88,
, pp. 1013-1024.
McCabe C., Manke C.W., Cummings P.T., “Predicting the Newtonian viscosity of complex
fluids from high strain rate molecular simulations”, J. Chem. Phys., Vol. 116, No. 8,
, pp. 3339-3342.
Meywerk M., Decker F., Cordes J., “Fluid-structure interaction in crash simulation”, Proc.
Inst. Mech. Engrs., Vol. 214, 1999, pp. 669-673.
Monaghan J.J., “Simulating free surface flows with SPH”, J. Comput. Phys., Vol. 110, 1994,
pp. 399-406.
Monaghan J.J., Gingold R.A., “Shock Simulation by the Particle Method SPH”, J. Comput.
Phys., Vol. 52, 1983, pp. 374-389.
Morris J.P., Fox P.J., Zhu Y., “Modelling low Reynolds number incompressible flows using
SPH”, J. Comput. Phys., Vol. 136, 1997, pp. 214-226.
PAM-CRASH Notes Manual, ESI-Group Trademark, 2001.
Pentecote N., Kohlgrueber D., Kamoulakos A., “Simulation of water impact problems using
the Smoothed Particle Hydrodynamics Method”, ICD’03 conference, Lille, France,
December, 2003.
Pillai K.M., “Governing equations for unsaturated flow through woven fibre mats, Part 1.
Isothermal flows”, Comp. Part A, Vol. 33, No. 7, 2002, pp. 1007-1019.
Sawley M., Cleary P., Ha J., “Modelling of Flow in Porous Media and Resin Transfer
Moulding using Smoothed Particle Hydrodynamics”, 2nd Int’l Conference on CFD in
Minerals and Process Industries, CSIRO, Melbourne, Australia, 6-8 Dec, 1999, pp. 473-
Shao S., Lo E.Y.M., “Incompressible SPH method for simulating Newtonian and non-
Newtonian flows with a free surface”, Adv Water Resources, Vol. 26, No. 7, 2003,
pp. 787-800.
Trochu F., Gauvin R., Gao D.M., “Numerical analysis of the Resin Transfer Molding process
by the Finite Element Method”, Adv. Polym. Tech., Vol. 12, No. 4, 1993, pp. 329-342.
Tucker III C.L., Dessenberger B., “Governing equations for flow and heat transfer in
stationary fibre beds”, Advani SG ed., Flow and Rheology in Polymer Composite
Manufacturing, Amsterdam, Elsevier, 1994, p. 257-323.
Wirth S., Gauvin R., “Experimental analysis of core crushing and core movement in RTM
and SRIM foam cored composite parts”, J. Reinf. Plast. Comp., Vol. 17, No. 11, 1998,
pp. 964-988.