Simulation of liquid composite molding processes using a generic mixed FE-SPH method

Authors

  • Sébastien Comas-Cardona Ecole des Mines de Douai, Technology of Polymers and Composites Department 941 rue Bourseul, BP 838, F-59508 Douai cedex
  • Paul H.L. Groenenboom Engineering Systems International-BV, Gebouw Kortland, Nieuwe Tiendweg 11a, 2922 EN Krimpen aan den IJssel, The Netherlands
  • Christophe Binétruy Ecole des Mines de Douai, Technology of Polymers and Composites Department 941 rue Bourseul, BP 838, F-59508 Douai cedex
  • Patricia Krawczak Krawczak Ecole des Mines de Douai, Technology of Polymers and Composites Department 941 rue Bourseul, BP 838, F-59508 Douai cedex

Keywords:

Smoothed Particle Hydrodynamics, finite elements, liquid composite molding, explicit numerical schemes

Abstract

Composite manufacturing processes involve multi-scale phenomena. Equations governing mechanics, heat transfer and fluid flow dynamics can be derived in the scale of the problem to solve. This article focuses on addressing fluid flow simulation needs for Liquid Composite Molding processes using a generic mixed FE-SPH method. The SPH method is Lagrangian and models fluids as particles. The method has been proven to be suitable to simulate fluid flows. Special solutions have been developed for flow through porous media and non-Newtonian fluid flow. Numerical schemes for such solutions are also given. The implementation of the SPH algorithm within a structural finite element software facilitates simulation of fluid-structure for LCM processes. Several applications are presented and discussed.

Downloads

Download data is not yet available.

References

Achilleos E., Georgiou G., Hatzikiriakos S., “On numerical simulations of polymer extrusion

instabilities”, Appl. Rheol., Vol. 12, 2002, pp. 88-104.

Acheson J.A., Simacek P., Advani S.G., “The implications of fiber compaction and saturation

on fully coupled VARTM simulation”, Comp. Part A, 2004, Vol. 35, pp. 159-169.

Belov E.B., Lomov S.V., Verpoest I., Peters T., Roose D., Parnas R.S., Hoes K., Sol H.,

“Modelling of permeability of textile reinforcements: lattice Boltzmann method”, Comp.

Sci. Tech., Vol. 64, No. 7-8, 2004, pp. 1069-1080.

Binetruy C., Advani S.G., “Foam core deformation during liquid molding of sandwich:

Modelling and experimental analysis”, J. Sand. Struc. Mat., Vol. 5, No. 4, 2003, pp. 351-

Cha H., Lee I., Choi H.Y., “Industrial applications of PAM-SHOCK using SPH”, In: PAM

Users Conference in Korea HANPAM ’99, Seoul, November 15-16, 1999, pp. 253-265.

Comas-Cardona S., Groenenboom P.H.L., Binetruy C., Krawczak P., “A generic mixed FESPH

method to address hydro-mechanical coupling in liquid composite moulding

processes”, Comp. Part A, 2005, To be published.

Ellero M., Kroeger M., Hess S., “Viscoelastic flows studied by Smoothed Particle Dynamic”,

J. Non-Newtonian Fluid Mech., Vol. 105, 2002, pp. 35-51.

Farina A., Cocito P., Boretto G., “Flow in deformable porous media: Modelling and

simulations of compression moulding processes”, Mathl. Comput. Modelling, Vol. 26,

No. 11, 1997, pp. 1-15.

Gingold R.A., Monaghan J.J., “Smoothed particle hydrodynamics: Theory and application to

non-spherical stars”, Mon. Not. R. Astr. Soc., Vol. 181, 1977, pp. 375-389.

Groenenboom P.H.L., Copper cylinder impact at high velocity: Numerical Simulation using

SPH and Finite Elements in PAM-SHOCK, ESI internal report, 2002.

Groenenboom P.H.L., “Numerical simulation of 2D and 3D hypervelocity impact using the

SPH option in PAM-SHOCK”, Int. J. Impact Eng., Vol. 120, 1997, pp. 309-323.

Haack C., On the use of a Particle Method for Analyis of Fluid-structure Interaction, Sulzer

Innotech Report STR TB2000 014, June, 2000.

Han K., Lee L.J., Liou M., “Fibre mat deformation in liquid composite molding, II:

Modelling”, Polym. Comp., Vol. 14, No. 2, 1993, pp. 151-160.

Kang M.K., Lee W.I.; Hahn H.T., “Analysis of vacuum bag resin transfer molding process”,

Comp. Part A, Vol. 32, 2001, pp. 1553-1560.

Libersky L.D., Petschek A.G., Smooth Particle Hydrodynamics with strength of materials,

In: Trease H.E., Fritts M.J. and Crowley W.P. (Ed.), Advances in Free-Lagrange

Methods, June 1990, Lecture Notes in Physics, Vol. 395, Spinger, New York, 1991,

pp. 248.

Lucy L.B., “A Numerical Approach to the Testing of Fusion Process”, Astron. J., Vol. 88,

, pp. 1013-1024.

McCabe C., Manke C.W., Cummings P.T., “Predicting the Newtonian viscosity of complex

fluids from high strain rate molecular simulations”, J. Chem. Phys., Vol. 116, No. 8,

, pp. 3339-3342.

Meywerk M., Decker F., Cordes J., “Fluid-structure interaction in crash simulation”, Proc.

Inst. Mech. Engrs., Vol. 214, 1999, pp. 669-673.

Monaghan J.J., “Simulating free surface flows with SPH”, J. Comput. Phys., Vol. 110, 1994,

pp. 399-406.

Monaghan J.J., Gingold R.A., “Shock Simulation by the Particle Method SPH”, J. Comput.

Phys., Vol. 52, 1983, pp. 374-389.

Morris J.P., Fox P.J., Zhu Y., “Modelling low Reynolds number incompressible flows using

SPH”, J. Comput. Phys., Vol. 136, 1997, pp. 214-226.

PAM-CRASH Notes Manual, ESI-Group Trademark, 2001.

Pentecote N., Kohlgrueber D., Kamoulakos A., “Simulation of water impact problems using

the Smoothed Particle Hydrodynamics Method”, ICD’03 conference, Lille, France,

December, 2003.

Pillai K.M., “Governing equations for unsaturated flow through woven fibre mats, Part 1.

Isothermal flows”, Comp. Part A, Vol. 33, No. 7, 2002, pp. 1007-1019.

Sawley M., Cleary P., Ha J., “Modelling of Flow in Porous Media and Resin Transfer

Moulding using Smoothed Particle Hydrodynamics”, 2nd Int’l Conference on CFD in

Minerals and Process Industries, CSIRO, Melbourne, Australia, 6-8 Dec, 1999, pp. 473-

Shao S., Lo E.Y.M., “Incompressible SPH method for simulating Newtonian and non-

Newtonian flows with a free surface”, Adv Water Resources, Vol. 26, No. 7, 2003,

pp. 787-800.

Trochu F., Gauvin R., Gao D.M., “Numerical analysis of the Resin Transfer Molding process

by the Finite Element Method”, Adv. Polym. Tech., Vol. 12, No. 4, 1993, pp. 329-342.

Tucker III C.L., Dessenberger B., “Governing equations for flow and heat transfer in

stationary fibre beds”, Advani SG ed., Flow and Rheology in Polymer Composite

Manufacturing, Amsterdam, Elsevier, 1994, p. 257-323.

Wirth S., Gauvin R., “Experimental analysis of core crushing and core movement in RTM

and SRIM foam cored composite parts”, J. Reinf. Plast. Comp., Vol. 17, No. 11, 1998,

pp. 964-988.

Downloads

Published

2005-06-11

How to Cite

Comas-Cardona, S. ., Groenenboom, P. H. ., Binétruy, C. ., & Krawczak, P. K. (2005). Simulation of liquid composite molding processes using a generic mixed FE-SPH method. European Journal of Computational Mechanics, 14(6-7), 867–883. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2199

Issue

Section

Original Article