Finite element implementation of a two-phase model for compression molding of composites
Keywords:
SMC, GMT, theory of mixture, two-phase shell model, segregationAbstract
A two-phase approach is proposed to model the rheology of polymer glass-fiber compounds such as SMC or GMT during processing. The anisotropic behavior of the composite, which is related to the microstructure of the fiber network, is reduced to the simple case of transverse isotropy. The rheology of the two media, e.g. the matrix and the fiber network, as well as their interaction follow non-linear viscous behaviors. The equations of this model are simplified to the case of the compression of SMC, giving the formulation of a shell model whose equations are written into a finite element code. Simple simulation examples thus show the strong influence of material and process parameters on the phenomenon of phase separation.
Downloads
References
Advani S. G., Flow and rheology in polymer composites manufacturing, vol. 10 of Composite
Materials Series, Elsevier, 1994.
Auriault J.-L., Royer P., Geindreau C., « Filtration law for power-law fluids in anisotropic
porous media », Int. J. Eng. Sci., vol. 40, p. 1151-1163, 2002.
Barone M., Osswald T., « Boundary integral equations for analyzing the flow of a chopped fiber
reinforced polymer compound in compression molding », J. Non-Newtonian Fluid Mech.,
vol. 26, p. 185-206, 1987.
Barone M. R., Caulk D. A., « Kinematics of flow of Sheet Molding Compounds », Polymer
Composites, vol. 6, n± 2, p. 105-109, 1985.
Barone M. R., Caulk D. A., « A model for the flow of a chopped fiber reinforced polymer
compound in compression molding », J. Appl. Mech., vol. 53, n± 191, p. 361-371, 1986.
Bowen R. M., Continuum physics III : mixtures and EM field theories, vol. III, Academic Press,
Bruschke M. V., Advani S. G., « Flow of generalized Newtonian fluid across a periodic array of
cylinders », J. Rheol., vol. 37, n± 3, p. 479-498, 1993.
Dhatt G., Gao D. N., Médal M., Song R., « Remplissage et solidification par éléments finis »,
Rev. Eur. Elém. Finis, vol. 1, p. 309-332, 1992.
Dhatt G., Touzot G., Une présentation de la méthode des éléments finis, Maloine S.A. Editeur,
Paris, et Les Presses de l’Université Laval, Québec, 1981.
Dumont P., Orgéas L., Corre S. L., Favier D., « Anisotropic viscous behavior of Sheet Molding
Compounds (SMC) during compression molding », Int . J. Plasticity, vol. 19, p. 625-646,
Fourestey G., Une méthode des caractéristiques d’ordre deux sur maillages mobiles pour la
résolution des équations de Navier-Stokes incompressible par éléments finis, Technical Report
n± 4448, INRIA, 2002.
Hieber C., Shen S., « A finite-element/finite-difference simulation of the injection-molding
filling process », J. Non-Newtonian Fluid Mech., vol. 7, p. 1-32, 1980.
Idris Z., Orgéas L., Geindreau C., Bloch J. F., Auriault J. L., « Microstructural effects on the
flow law of power-law fluid through fibrous media », Modelling Simul. Mater. Sci. Eng.,
vol. 5, p. 995-1116, 2004.
Jackson G. W., James D. F., « The permeability of fibrous porous media », Can. J. Chem. Eng.,
vol. 64, p. 364-374, 1986.
Kaazempur-Mofrad M. R., Minev P. D., Ethier C. R., « A characteristic/finite element algorithm
for time-dependent 3-D advection-dominated transport using unstructured grids », Comput.
Meth. Appl. Mech. Eng., vol. 192, p. 1281-1298, 2003.
Keller J. B., « Viscous flow through a grating or lattice of cylinders », J. Fluid Mech., vol. 18,
n± 1, p. 94-96, 1964.
Le Corre S., Orgéas L., Favier D., Tourabi A., Maazouz A., Venet C., « Shear and compression
behaviour of Sheet Moulding Compounds », Compos. Sci. Technol., vol. 62, p. 571-577,
Lee C. C., Folgar F., Tucker C. L., « Simulation of compression molding for fiber-reinforced
thermosetting polymers », Polymer Composites, vol. 106, p. 114-125, 1984.
LiuW., Xu S., « A new improved Uzawa method for finite element solution of stokes problem »,
Comput. Mech., vol. 27, p. 305-310, 2001.
Magnin B., Modélisation du remplissage des moules d’injection pour polymères thermoplastiques
par une méthode Eulérienne-Lagrangienne Arbitraire, PhD thesis, École Nationale
Supérieure des Mines de Paris, 1994.
Odenberger P., Anderson H., Lundström T., « Experimental flow front visualisation in compression
moulding of SMC », Composites: Part A, vol. 35, p. 1125-1134, 2004.
Osswald T. A., Tseng S. C., Flow and rheology in polymer composites manufacturing, vol. 10
of Composite Materials Series, Ed. S. G. Advani - Elsevier, chapter C8 - Compression
Molding, p. 361-413, 1994.
Osswald T. A., Tucker C. L., « Compression mold filling simulation for non-planar parts »,
Intern. Polymer Processing, vol. 2, p. 79-87, 1990.
Robichaud M. P., Tanguy P. A., Fortin M., « An iterative implementation of the Uzawa algorithm
for 3-fluid flow problems », Int. J. Num. Methods in Fluids, vol. 10, p. 429-442,
Scardovelli R., Zaleski S., « Direct dumerical simulation of free-surface and interfacial flow »,
Annu. Rev. Fluid Mech., vol. 31, p. 567-603, 1999.
Servais C., Luciani A., Månson J.-A. E., « Squeeze flow of concentrated long fibre suspensions:
experiments and model », J. Non-Newtonian Fluid Mech., vol. 104, p. 165-184, 2002.
Souli M., Zolesio J. P., « Arbitrary Lagrangian-Eulerian and free surface methods in fluid mechanics
», Comput. Methods Appl. Mech. Eng., vol. 191, p. 451-466, 2001.
Thomasson J. L., Vlug M. A., « Influence of fibre length and concentration on the properties of
glass fibre-reinforced polypropylene: 1. Tensile and flexural modulus », Composites: Part
A, vol. 27A, p. 477-484, 1996.
Truesdell C., Toupin R., vol. III1, S Flugge, Berlin, 1960.
Yaguchi H., Hojo H., Lee D. G., Kim E. G., « Measurement of planar orientation of fibers
for reinforced thermoplastics using image processing », Intern. Polymer Processing, vol. 3,
p. 262-269, 1995.
Zienkiewicz O. C., Taylor R. L., The Finite Element Method, Fifth Edition. Volume 1: The
Basis, Butterworth-Heinemann, Oxford, UK, 2000.