Pedestrian lower limb injury criteria evaluation

A finite element approach

Authors

  • Pierre-Jean Arnoux Laboratoire de Biomécanique Appliquée, UMRT24 INRETS Université de la Méditerranée, Faculté de Médecine Nord, Bd. Pierre Dramard, F-13916 Marseille
  • Michel Behr Laboratoire de Biomécanique Appliquée, UMRT24 INRETS Université de la Méditerranée, Faculté de Médecine Nord, Bd. Pierre Dramard, F-13916 Marseille
  • Lionel Thollon Laboratoire de Biomécanique Appliquée, UMRT24 INRETS Université de la Méditerranée, Faculté de Médecine Nord, Bd. Pierre Dramard, F-13916 Marseille and MECALOG Business Unit Safety, Faculté de Médecine Nord Bd. Pierre Dramard, F-13916 Marseille
  • Jérome Cardot Laboratoire de Biomécanique Appliquée, UMRT24 INRETS Université de la Méditerranée, Faculté de Médecine Nord, Bd. Pierre Dramard, F-13916 Marseille
  • Dominique Cesari Laboratoire de Biomécanique Appliquée, UMRT24 INRETS Université de la Méditerranée, Faculté de Médecine Nord, Bd. Pierre Dramard, F-13916 Marseille
  • Christian Brunet Laboratoire de Biomécanique Appliquée, UMRT24 INRETS Université de la Méditerranée, Faculté de Médecine Nord, Bd. Pierre Dramard, F-13916 Marseille

Keywords:

lower limb model, injury criteria, knee ligaments, pedestrian impact

Abstract

In the field of pedestrian injury biomechanics, knees and lower legs are highly recruited during crash situations, leading to joint damage and bones failures. This paper shows how numerical simulation can be used to complete injury mechanism analysis and then to postulate on a knee injury criteria in lateral impact. It focuses on relationships between ultimate lateral bending and shearing at the knee level and potential ligament damage, based on subsystem experimental tests. These ultimate knee lateral bendings and shearings for potential failure of ligaments (posterior cruciate, medial collateral, cruciates and tibial collateral) were estimated at 16° and 15 mm in pure lateral shearing and bending impact tests respectively. Then this methodology was applied on a full test of pedestrian impact.

Downloads

Download data is not yet available.

References

Arnoux P.J., Modélisation des ligaments des membres porteurs, Ph D. Thesis, Université de

la Méditerranée, 2000.

Arnoux P.J., Kang H. S., Kayvantash K., “The Radioss Human model for Safety”, Archives of

Physiology and Biochemistry, vol. 109, 2001, p. 109.

Arnoux P.J., Cavallero C., Chabrand P., Brunet C., “Knee ligaments failure under dynamic

loadings”. International Journal of Crashworthiness, Vol 7 (3), 2002, pp. 255-268.

Arnoux P. J., Thollon L., Kayvantash K., Behr M., Cavallero C., Brunet C., “Advanced lower

limb model with Radioss, application to frontal and lateral impact Radios lower limb

model for safety”, Proceedings of the IRCOBI Conference, 2002.

Arnoux P.J., Kang H.S., Kayvantash K., Brunet C., Cavallero C., Beillas P., Yang H., “The

Radioss Lower Limb Model for safety: application to lateral impacts”, International

Radioss user Conference. Sophia, June 2001.

Arnoux P. J., Cesari D., Behr M., Thollon L., Brunet C., “Pedestrian lower limb injury

criteria evaluation a finite element approach”, under press in Traffic Injury Prevention

journal, 2004.

Atkinson P., A stress based damage criterion to predict articular joint injury from subfracture

insult, Ph.D. thesis, Michigan State University 1998.

Atkinson P.J., Haut R., Eusebi C., Maripudi V., Hill T., Sambatur K., “Development of injury

criteria for human surrogates to address current trends in knee-to-instrument panel

injury”, Stapp Car Crash Conference Proceedings, pp. 13-28, 1998.

Attarian D.E., Mc. Crackin H.J., Mc. Elhaney J.H., DeVito D.P., Garrett W.E.,

“Biomechanics characteristics of the human ankle ligaments”, Foot and Ankle, vol. 6.,

N°. 2, pp. 54-58, 1985.

Banglmaier, R.F., Dvoracek-Driskna, D., Oniang'o, T.E., and Haut, R.C. “Axial compressive

load response of the 90 degrees flexed human tibio femoral joint”, 43rd Stapp Car Crash

Conf. Proceedings. 1999, pp. 127-138.

Beaugonin M., Haug E., Cesari D., “A numerical model of the human ankle/foot under

impact loading in inversion and eversion”, 40th Stapp Car Crash Conference Proc.,

Beaugonin M., Haug E., Cesari D., “Improvement of numerical ankle/foot model: modeling

of deformable bone”, 41th Stapp Car Crash Conference Proc., 1997.

Bedewi P.G., Bedewi N.E., “Modelling of occupant biomechanics with emphasis on the

analysis of lower extremitiey injuries”, International Journal of Crash, Vol. (1): p. 50-72,

Behr M., Arnoux P. J., Serre T., Bidal S., Kang H.S., Thollon L., Cavallero C., Kayvantash

K., Brunet C., “A Human model for Road Safety : From geometrical acquisition to Model

Validation with Radioss”, International Journal on Computer Methods in Biomechanics

and Biomedical Engineering, vol 6, No. 4, 2003.

Behr M., Arnoux P.J., Thollon L., Serre T., Cavallero C., Brunet C., “Towards integration of

muscle tone in lower limbs subjectes to impacts”, IX International Symposium on

Computer Simulation in Biomechanics, Juin 2003, Sydney, Australia.

Beillas P., Arnoux P. J., Brunet C., Begeman P., Cavallero C., Yang K., King A., Kang H. S.,

Kayvantash K., Prasad P., “Lower Limb: Advanced FE Model and New Experimental

Data”, International Journal of STAPP - ASME, vol. 45, pp. 469-493, 2001.

Beillas P., Modélisation des membres inférieurs en situation de choc automobile, Ph.D.

thesis, Ecole Nationale Supérieure d'Arts et Métiers, Paris, France, 1999.

Beillas P., Lavaste F., Nicoloupoulos D., Kayventash K., Yang K. H., Robin S., “Foot and

ankle finite element modeling using CT-scan data”, Stapp Car Crash Conference Proc.

Bennett, M.B. and Ker, R.F., “The mechanical properties of the human subcalcaneal fat pad

in compression”. J. of Anat., 171, p.131-138, 1990.

Bidal S., Reconstruction tridimensionnelle d’éléments anatomique et génération automatique

de maillages éléments finis optimisés, PhD. Thesis, Université de Provence, 2003.

Bose D., Bhalla K., Rooij L., Millington S., Studley A., Crandall J., “Response of the Knee

joint to the pedestrian impact loading environment”, SAE World Congress, 2004.

Burstein A.H., Currey J.D., Frankel V.H., Reilly D.T., “The ultimate properties of bone

tissue: the effects of yielding”, J. of Biomech., p. 35, 1972.

Chawla A., Mukherjee S., Mohan D., Parihar A., “Validation of Lower Extremity Model in

THUMS”, IRCOBI conference, 2004.

Crandall J.R., Portier L., Petit P., Hall G.W., Bass C.R., Klopp G.S., Hurwitz S., Pilkey

W.D., Trosseille X., Tarriere C., and Lassau J.P., “Biomechanical response and physical

properties of the leg, foot, and ankle”, 40th Stapp Car Crash Conference Proc. SAE,

pp. 173-192, 1996.

Goldstein S.A., “The mechanical properties of trabecular bone: dependence on anatomic

location and function”, Journal of Biomechanics. Vol. 20, (11.12), p. 1055-1061, 1987.

Grzegorz Teresinski, Roman Madro, “Pelvis and hip injuries as a reconstructive factors in

car-to-pedestrian accidents”, Forensic Science International 124, pp 68-73, 2001.

Haut R. C., Atkinson P. J., “Insult to the human cadaver patellofemoral joint : effect of age on

fracture tolerence and occult injury”, 39th Stapp Car Crash Conference Proc., SAE, 1995.

Hayashi S., Choi H.Y., Levine R.S., Yang K.H., King A.I., “Experimental and analytical

study of knee fracture mechanisms in a frontal knee impact”, 40th Stapp Car Crash Conf.

Proc., p. 161, 1996.

IHRA/PS/200, International Harmonized Research Activities, Pedestrian Safety Working

Group Report, 2001.

Johnson G.A., “A single integral finite strain viscoelastic model of ligaments and tendons.” J.

of Biomech. Eng., vol. 118, pp. 221-226, 1996.

Kajzer J., Cavallero C., Bonnoit J., Morjane A., Ghanouchi S., “Response of the knee joint in

lateral impact: Effect of bending moment”, Proc. IRCOBI, pp. 105-116, 1993.

Kajzer J., Cavallero C., Bonnoit J., Morjane A., Ghanouchi S., “Response of the knee joint in

lateral impact: Effect of shearing loads”, Proc. IRCOBY, pp. 293-304, 1990.

Kennedy J.C., Weinberg H.W., Wilson A.S., “The anatomie and function of the anterior

cruciate ligament”, J. Bone Joint Surg., vol. 56, pp. 223-235, 1974.

Kerrigan J.R., Ivarsson B.J., Bose D., Madeley N.J., Millington S.A., Bhalla K. S., Crandall

J.R., “Rate sensitive constitutive and failure properties of human collateral knee

ligaments”, IRCOBI conference, pp. 193, 2003.

Li L.P., Buschmann M.D., Shirazi-Adl A., “Stain rate depedent stiffness of articular cartilage

in unconfined compression”, Journal of Biomechanical Engineering, Vol. 125, pp. 161-

, 2003.

Lizee E., Robin S., Soong E., Bertholon N., Le Coz J. Y., Besnault B., Lavaste F.,

“Developpement of a 3D finite element model of the human body”, Proc. Stapp Car

Crash Conf., pp. 215-238, 1998.

Marinozzi G., Pappalardo S., Steindler R., “Human knee ligaments: mechanical tests and

ultrastructural observations”. Ital. J. Orthop. Traum., Vol. 9, pp. 231-240, 1982.

Mcelhaney J.H., “Dynamic response of bone and muscle tissue”, J. Appl. Physiol, 21(4):

pp. 1231-1236, 1966.

Mow V.C., Kuei S.C., Lai W.M., Holmes M.H., “Biphasic creep and stress relaxation of

articular cartilage in compression. Theory and experiment”, Journal of Biomechanical

engineering, 102, 1980, pp. 73-84.

Noyes F.R., “The strength of the anterior cruciate ligament in humans and rhesus monkeys”,

J. of Bone & Joint Surgery, pp. 1074-1081, 1976.

Nyquist G.W., Cheng R., El-Bohy A.R., King A.I.. “Tibia bending : strength and response”,

th Stapp Car Crash Conference Proc., pp. 99-112, SAE, 1985.

Parenteau C.S., Foot and Ankle joint response – epidemiology, biomechanics and

mathematical modeling, Ph. D. thesis, Chalmers Univ. 1996.

Prietto M.P., Bain J.R., Stonebrook S.N., Settleage R.A., “Tensile strength of the human

posterior cruciate ligament (PCL)”, Trans. Orthop. Res. Soc., vol. 17, pp. 124, 1992.

Race A., “The mechanical properties of the two bundles of the human posterior cruciate

ligament”, J. Biomech., vol 9, pp. 449-452, 1976.

Radin E.L., Paul I.L., Lowy M., “A comparison of the dynamic force transmitting properties

in subchondral bone and articular cartilage”, Journal of Bone and Joint Surgery, 52A,

, 444-456.

Reilly D.T., Burstein A.H., “The elastic and ultimate properties of compact bone tissue”,

Journal of Biomechanics, p. 393, 1975.

Repo, R. and Finlay, J., “Survival of articular cartilage after controlled impact”, Journal of

Bone Joint and Surgery, (59), 1977, pp. 1068.

Schuster P.J., Chou C.C., Prasad P., Jayaraman G., “Development and Validation of a

Pedestrian Lower Limb Non-Linear 3-D Finite Element Model”, 44th Stapp Car Crash

Conference Proceedings, Atlanta, 2000-01-SC21, 2000.

Stutts J.C., Hunter, W.W., “Motor vehicle and roadway factors in pedestrian and bicyclists

injuries: an examination based on emergency department data”, Accident analysis and

prevention, Volume 31, No 5, 1999, pp. 505-514.

Subit D., Modélisation de la liaison os ligament dans l’articulation du genou, PhD. Thesis,

Université de la Méditerranée, 2004.

Tannous R.E., Bandak F.A., Toridis T.G., Eppinger R.H., “A three-dimensional finite

element model of the human ankle: development and preliminary application to axial

impulsive loading”, 40th Stapp Car Crash Conference Proc., SAE. pp. 219-238, 1996.

Thollon L., Modélisation du membre thoracique dans le cadre d’un choc latéral: Approche

expérimentale et numérique, Ph. D. Thesis, Université de la Méditerranée, 2001.

Thollon L., Arnoux P. J., Kayvantash K., Cavallero C., Brunet C., “From dummy criteria to

injury evaluation using Humos Radioss finite element model”, Proceedings of the

IRCOBI conference, 2002.

Tropiano P., Thollon L., Arnoux P.J., Behr M., Kayvantash K., Brunet C., Finite element

analysis and virtual traumatology : Application to Neck-injury in frontal crash situations,

Spine, Vol. 29, N°16, 2004, pp. 1709-1716.

Viano D.C., Culver C.C., Haut R.C., Melvin J.W., Bender M., Culver R.H., Levine R.S.,

“Bolster impacts to the knee and tibia of human cadavers and an anthropomorphic

dummy”, 22nd Stapp Car Crash Conference Proc., 1978, pp. 401.

Viidick A., “Functional properties of collagenous tissues”, Int. Rev. of connective tissue

research, Vol 6, Academic press, New York, 1973.

Yamada H, Strength of biological matérials, Edited by F. Gaynor Evans, 1970.

Yang J., Injury Biomechanics in car pedestrian collisions: development, validation and

application of Human-Body mathematical models, Ph.D. thesis, Chalmers University

Downloads

Published

2005-08-27

How to Cite

Arnoux, P.-J., Behr, M. ., Thollon, L. ., Cardot, J., Cesari, D. ., & Brunet, C. . (2005). Pedestrian lower limb injury criteria evaluation: A finite element approach. European Journal of Computational Mechanics, 14(4-5), 487–515. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2217

Issue

Section

Original Article

Most read articles by the same author(s)