Injury mechanism in non-penetrating thoracic impact: finite element study

Authors

  • Quentin Grimal Laboratoire d’Imagerie Paramétrique, UMR CNRS 7623 Université Pierre et Marie Curie 15, rue de l’école de médecine F-75006 Paris
  • Salah Naïli Laboratoire de Mécanique Physique, CNRS UMR 7052 B2OA Université Paris XII-Val de Marne, Faculté des Sciences et Technologie 61, Avenue du Général de Gaulle F-94010 Créteil Cedex

Keywords:

biomechanics, impact, blunt trauma, finite elements

Abstract

The work presented is motivated especially by behind armor blunt trauma, that is, injury following the defeat of a high-energy projectile by a rigid body armor. While the bullet is stopped and the effects of the projectile penetrating the biological tissues are prevented, a considerable amount of energy is transmitted through the projective layers of the armor, and delivered to the human body. Eventually, tissues behind the body armor are injured. An idealized model of the thorax (thoracic wall and lung) was built. The dynamic response of the thorax model is calculated. The results presented allow to describe a probable injury mechanism.

Downloads

Download data is not yet available.

References

Bir C., The evaluation of blunt ballistic impacts of the thorax, PhD thesis, Wayne State University,

Detroit, Michigan, 2000.

Bush I., Challener S., « Finite element modelling of non-penetrating thoracic impact », Proceedings

of the International Research Council on the Biomechanics of Impact (IRCOBI),

Bergish-gladbach, p. 227-238, 1988.

Cannon L., Tam W., « The development of a physical model of non-penetrating ballistic injury

», 19th International Symposium of Ballistics, 7-11 May 2001, Interlaken, Switzerland,

p. 885-888, 2001.

Cooper G., Maynard R., « An experimental investigation of the biokinetic principles governing

non-penetrating impact on the chest and the influence of the rate of body wall distortion

upon the severity of lung injury », Proceedings of the International Research Council on

the Biomechanics of Impact (IRCOBI), Zürich, p. 331-342, 1986.

Cooper G., Pearce B., Sedman A., Bush I., Oakley C., « Experimental evaluation of a rig to

simulate the response of the thorax to blast loading », The Journal of Trauma, vol. 40,

p. S38-S41, 1996.

Cooper G., Townend D., Cater S., Pearce B., « The role of stress waves in thoracic visceral

injury from blast loading: modification of stress transmission by foams and high-density

materials », Journal of Biomechanics, vol. 24, p. 273-295, 1991.

Cooper J., Pearce B., Stainer M., Maynard R., « The biomechanical response of the thorax to

nonpenetrating impact with particular reference to cardiac injuries », The Journal of Trauma

– Injury Infection and Critical Care, vol. 22, p. 994-1008, 1982.

Fung Y., Biomechanics: motion, flow, stress, and growth, Springer-Verlag, New-York, 1990.

Fung Y., Biomechanics; mechanical properties of living tissues, Springer-Verlag, New-York,

Grimal Q., Gama B., Naïli S., Watzky A., Gillespie J., « Finite element study of high-speed

blunt impact on thorax: linear elastic considerations », International Journal of Impact

Engineering, vol. 30, p. 665-683, 2004.

Grimal Q., Naïli S., Watzky A., « A high-frequency lung injury mechanism in blunt thoracic

impact », Journal of Biomechanic, vol. 38, n° 6, p. 1247-1254, 2005.

Hallquist J., LS-DYNA theoretical manual and keyword user’s manual, Technical report, Livermore

Software Technology Corporation, 2001.

Herlaar K., Optical pressure measurement methods at impact loading in a tissue simulant behind

armour, PhD thesis, Faculty of Applied Sciences, Delft University of Technology, Delft, the

Netherlands. Munition Effects and Ballistic Protection Group, TNO Prins Maurits Laboratory,

Rijswijk, the Netherlands, 2003.

Jahed M., Lai-fook S., Bhagat P., Kraman S., « Propagation of stress waves in inflated sheep

lungs », Journal of Applied Physiology, vol. 66, p. 2675-2680, 1989.

National Library of Medicine, « Visible Human Project », 2003. WEB page

http://www.nlm.nih.gov/research/visible/.

Raftenberg M., Response of the Wayne State Thorax Model with fabric vest to a 9-mm bullet,

Technical Report n° ARL-TR-2897, Army Research Laboratory, 2003.

Raftenberg M., DeMaio M., Parks S., Blethen W., Carlson T., Mackiewicz J., « Blunt trauma

from nonperforating impact on fabric armor », Proceedings of the 25th Annual Meeting of

the American Society of Biomechanics, 2001.

Sarron J., « La modélisation numérique dans la définition de nouvelles protections individuelles

antibalistiques », L’Armement (revue de la Délégation Générale pour l’Armement), vol. 76,

p. 54-61, 2001.

Sarron J., Da Cunha J., Caillou J., Allain J., « Dynamic cone development in aramid plate, modeling

of rear effects for individual protection », Proceedings of the PAM Users Conference

in Europe EuroPAM, Nantes, France, October, 2000.

Sneddon I., Fourier transforms, International Series in Pure and Applied Mathematics, first

edition edn, McGraw-Hill Book Company, Inc., 1951.

Stuhmiller J., Chuong C., Phillips Y., Dodd K., « Computer modeling of thoracic response to

blast », Journal of Trauma – Injury Infection and Critical Care, vol. 28, p. S132-S139,

van Bree J., Gotts P., « The ’twin peaks’ of BABT », Proceedings of the Personal Armour

Systems Symposium 2000. Colchester, UK. 5-8 Septembre, 2000.

van Bree J., van der Heiden N., « Behind armour blunt trauma analysis of compression

waves », Proceedings of the Personal Armour Systems Symposium 1998. Colchester, UK.

-11 Septembre, p. 433-440, 1998.

van der Hijden J., Propagation of transient elastic waves in stratified anisotropic media, vol. 32

of Applied Mathematics and Mechanics, North Holland, Elsevier Science Publishers, Amsterdam,

Vawter D., « A finite element model for macroscopic deformation of the lung », Journal of

Biomechanical Engineering, vol. 102, p. 1-7, 1980.

Vawter D., Fung Y., West J., « Constitutive equation of lung tissue elasticity », Journal of

Biomechanical Engineering, vol. 101, p. 38-45, 1979.

Viano D., King A., Melvin J., Weber K., « Injury biomechanics research: an essential element

in the prevention of trauma », Journal of Biomechanics, vol. 22, p. 403-41, 1989.

Viano D., Lau I., « A viscous tolerance criterion for soft tissue injury assesment », Journal of

Biomechanics, vol. 21, p. 387-399, 1988.

Wang H., Development of a side impact finite element human thoracic model, PhD thesis,

Wayne State University, Detroit, 1995.

Yen R., Fung Y., Ho H., Butterman G., « Speed of stress wave propagation in lung », J. Appl.

Physiol., vol. 61, n° 2, p. 701-705, 1986.

Yen R., Fung Y., Liu S., « Trauma of the lung due to impact load », Journal of Biomechanics,

vol. 21, p. 745-753, 1988.

Downloads

Published

2005-09-24

How to Cite

Grimal, Q. ., & Naïli, S. . (2005). Injury mechanism in non-penetrating thoracic impact: finite element study. European Journal of Computational Mechanics, 14(4-5), 517–540. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2219

Issue

Section

Original Article