Injury mechanism in non-penetrating thoracic impact: finite element study
Keywords:
biomechanics, impact, blunt trauma, finite elementsAbstract
The work presented is motivated especially by behind armor blunt trauma, that is, injury following the defeat of a high-energy projectile by a rigid body armor. While the bullet is stopped and the effects of the projectile penetrating the biological tissues are prevented, a considerable amount of energy is transmitted through the projective layers of the armor, and delivered to the human body. Eventually, tissues behind the body armor are injured. An idealized model of the thorax (thoracic wall and lung) was built. The dynamic response of the thorax model is calculated. The results presented allow to describe a probable injury mechanism.
Downloads
References
Bir C., The evaluation of blunt ballistic impacts of the thorax, PhD thesis, Wayne State University,
Detroit, Michigan, 2000.
Bush I., Challener S., « Finite element modelling of non-penetrating thoracic impact », Proceedings
of the International Research Council on the Biomechanics of Impact (IRCOBI),
Bergish-gladbach, p. 227-238, 1988.
Cannon L., Tam W., « The development of a physical model of non-penetrating ballistic injury
», 19th International Symposium of Ballistics, 7-11 May 2001, Interlaken, Switzerland,
p. 885-888, 2001.
Cooper G., Maynard R., « An experimental investigation of the biokinetic principles governing
non-penetrating impact on the chest and the influence of the rate of body wall distortion
upon the severity of lung injury », Proceedings of the International Research Council on
the Biomechanics of Impact (IRCOBI), Zürich, p. 331-342, 1986.
Cooper G., Pearce B., Sedman A., Bush I., Oakley C., « Experimental evaluation of a rig to
simulate the response of the thorax to blast loading », The Journal of Trauma, vol. 40,
p. S38-S41, 1996.
Cooper G., Townend D., Cater S., Pearce B., « The role of stress waves in thoracic visceral
injury from blast loading: modification of stress transmission by foams and high-density
materials », Journal of Biomechanics, vol. 24, p. 273-295, 1991.
Cooper J., Pearce B., Stainer M., Maynard R., « The biomechanical response of the thorax to
nonpenetrating impact with particular reference to cardiac injuries », The Journal of Trauma
– Injury Infection and Critical Care, vol. 22, p. 994-1008, 1982.
Fung Y., Biomechanics: motion, flow, stress, and growth, Springer-Verlag, New-York, 1990.
Fung Y., Biomechanics; mechanical properties of living tissues, Springer-Verlag, New-York,
Grimal Q., Gama B., Naïli S., Watzky A., Gillespie J., « Finite element study of high-speed
blunt impact on thorax: linear elastic considerations », International Journal of Impact
Engineering, vol. 30, p. 665-683, 2004.
Grimal Q., Naïli S., Watzky A., « A high-frequency lung injury mechanism in blunt thoracic
impact », Journal of Biomechanic, vol. 38, n° 6, p. 1247-1254, 2005.
Hallquist J., LS-DYNA theoretical manual and keyword user’s manual, Technical report, Livermore
Software Technology Corporation, 2001.
Herlaar K., Optical pressure measurement methods at impact loading in a tissue simulant behind
armour, PhD thesis, Faculty of Applied Sciences, Delft University of Technology, Delft, the
Netherlands. Munition Effects and Ballistic Protection Group, TNO Prins Maurits Laboratory,
Rijswijk, the Netherlands, 2003.
Jahed M., Lai-fook S., Bhagat P., Kraman S., « Propagation of stress waves in inflated sheep
lungs », Journal of Applied Physiology, vol. 66, p. 2675-2680, 1989.
National Library of Medicine, « Visible Human Project », 2003. WEB page
http://www.nlm.nih.gov/research/visible/.
Raftenberg M., Response of the Wayne State Thorax Model with fabric vest to a 9-mm bullet,
Technical Report n° ARL-TR-2897, Army Research Laboratory, 2003.
Raftenberg M., DeMaio M., Parks S., Blethen W., Carlson T., Mackiewicz J., « Blunt trauma
from nonperforating impact on fabric armor », Proceedings of the 25th Annual Meeting of
the American Society of Biomechanics, 2001.
Sarron J., « La modélisation numérique dans la définition de nouvelles protections individuelles
antibalistiques », L’Armement (revue de la Délégation Générale pour l’Armement), vol. 76,
p. 54-61, 2001.
Sarron J., Da Cunha J., Caillou J., Allain J., « Dynamic cone development in aramid plate, modeling
of rear effects for individual protection », Proceedings of the PAM Users Conference
in Europe EuroPAM, Nantes, France, October, 2000.
Sneddon I., Fourier transforms, International Series in Pure and Applied Mathematics, first
edition edn, McGraw-Hill Book Company, Inc., 1951.
Stuhmiller J., Chuong C., Phillips Y., Dodd K., « Computer modeling of thoracic response to
blast », Journal of Trauma – Injury Infection and Critical Care, vol. 28, p. S132-S139,
van Bree J., Gotts P., « The ’twin peaks’ of BABT », Proceedings of the Personal Armour
Systems Symposium 2000. Colchester, UK. 5-8 Septembre, 2000.
van Bree J., van der Heiden N., « Behind armour blunt trauma analysis of compression
waves », Proceedings of the Personal Armour Systems Symposium 1998. Colchester, UK.
-11 Septembre, p. 433-440, 1998.
van der Hijden J., Propagation of transient elastic waves in stratified anisotropic media, vol. 32
of Applied Mathematics and Mechanics, North Holland, Elsevier Science Publishers, Amsterdam,
Vawter D., « A finite element model for macroscopic deformation of the lung », Journal of
Biomechanical Engineering, vol. 102, p. 1-7, 1980.
Vawter D., Fung Y., West J., « Constitutive equation of lung tissue elasticity », Journal of
Biomechanical Engineering, vol. 101, p. 38-45, 1979.
Viano D., King A., Melvin J., Weber K., « Injury biomechanics research: an essential element
in the prevention of trauma », Journal of Biomechanics, vol. 22, p. 403-41, 1989.
Viano D., Lau I., « A viscous tolerance criterion for soft tissue injury assesment », Journal of
Biomechanics, vol. 21, p. 387-399, 1988.
Wang H., Development of a side impact finite element human thoracic model, PhD thesis,
Wayne State University, Detroit, 1995.
Yen R., Fung Y., Ho H., Butterman G., « Speed of stress wave propagation in lung », J. Appl.
Physiol., vol. 61, n° 2, p. 701-705, 1986.
Yen R., Fung Y., Liu S., « Trauma of the lung due to impact load », Journal of Biomechanics,
vol. 21, p. 745-753, 1988.