Mixed finite element formulation in large deformation frictional contact problem
Keywords:
contact, mixed finite element, friction, dynamic explicit, mortar elementsAbstract
This paper presents a mixed variational framework and numerical examples to treat a bidimensional friction contact problem in large deformation. Two different contact algorithms with friction are developed using the 2D finite element code PLAST2. The first contact algorithm is the classical node-on-segment, and the second one corresponds to an extension of the mortar element method to a unilateral contact problem with friction. In this last method, the discretized normal and tangential stresses on the contact surface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. The two algorithms based on Lagrange multipliers method are developed and compared for linear and quadratic elements.
Downloads
References
Alart P., Curnier A., “A mixed formulation for frictional contact problems prone to Newton
like solution methods”, Comp. Meth. Appl. Mech. Eng., 92, 1991, pp. 253-275.
Baillet L., Sassi T., “Finite element method with Lagrange multipliers for contact problems
with friction”, C.R. Acad. Sci. Paris, Ser. I 334, 2002, pp. 917-922.
Baillet L., Sassi T., “Numerical implementation of differents finite elements methods for
contact problems with friction”, C.R. Acad. Sci. Paris, Serie IIB Mechanic, V.331, Issue
, 2003, pp. 789-796.
Bernardi C., Maday Y. and Patera A.T., “A new nonconforming approach to domain
decomposition : the mortar element method”, Collège de France Seminar, Eds H.Brezis,
J-L. Lions Pitman, 13-51, 1994.
Bruyère K., Baillet L., Brunet M., “Fiber matrix interface modelling with different contact
and friction algorithms”, CIMNE, Edited by : D.R.J.Owen, E.Onate and E. Hinton, 1997,
pp. 1156-1161.
Chaudhary A., Bathe K.J., “A solution method for static and dynamic analysis of threedimensional
problems with friction”, Computers and Structures, Vol. 37, 1986, pp. 319-331.
Ciarlet P.G., “The finite element method for elliptic problems”, Studies in Mathematics and
its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford,
Coorevits P., Hild P., Lhalouani K., Sassi T., “Mixed finite elements methods for unilateral
problems: convergence analysis and numerical studies”, Mathematics of Computation,
Vol. 71, No. 237, 2002, pp. 1-25.
Duvaut G. et Lions J.-L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972.
Haslinger J., Halavàcek I., “Approximation of Signorini problem with friction by a mixed
finite element method”, J. Math. Anal. Appl., 86, 1982, pp. 99-122.
Hild P., Problèmes de contact unilatéral et maillages éléments finis incompatibles, Thèse
No d’ordre : 2903, Doctorat de l’Université Paul Sabatier, 177 pages, 1998.
Hild P., “Numerical implementation of two nonconforming finite element methods for
unilateral contact”, Comp. Meth. Appl. Mech. Eng., 184, 2000, pp. 99-123.
Hild P., Laborde P., “Quadratic finite element methods for unilateral contact problems”,
Applied Numerical Mathematics, 41, 2002, pp. 401-421.
Klarbring A., “A mathematical programming approach to three dimensional contact problems
with friction”, Comp. Meth. Appl. Mech. Eng., Vol. 58, 1986, pp. 175-200.
Kikuchi N., Oden J.T., “Contact problems in elasticity: A study of variational Inequalities and
Finite Element Methods”, SIAM, Philadelphia, 1988.
McDevitt T.W. and Laursen T.A., “A mortar-finite element formulation for frictional contact
problem”, Int. J. Numer. Meth. Engng, 48, 2000, pp. 1525-1547.
May H.-O., “The conjugate gardient method for unilateral problems”, Computers and
structures, 12, (4), 1986, pp. 595-598.
Moussaoui M., Khodja K., “Régularité des solutions d'un problème Dirichlet-Signorini dans
un domaine polygonal plan”, Commun. Part. Diff. Eq., 17, 1992, pp. 805-826.
Raous M., Barbarin S., “Conjugate gradient for frictional contact”, Proceeding of the Contact
Mechanics International Symposium, A. Curnier (Ed.), 1992.
Rebel G., Park K. C., Felippa C.A., “A contact formulation based on localized Lagrange
multipliers: formulation and application to two-dimensional problems” International
Journal for Numerical Methods in Engineering Vol. 54, Issue: 2, 2002, pp. 263-297.
Simo J.C., Laursen T.A., “An augmented Lagrangian treatment of contact problem involving
friction”, Computers and Structures, 42, 1992, pp. 97-116.
Wriggers P., “Finite element algorithms for contact problems”, Archives of Computational
Methods in Engineering, 1995, pp. 1-49.
Wriggers P., VU Van T., Stein E., “Finite element formulation of large deformation impactcontact
problems with friction”, Computers and Structures, Vol. 37, 1990, pp. 319-331.
Zhong Z., Mackerle J., “Static problems-a review”, Engineering Comput., 9, 1992, p. 3-37.