Mixed finite element formulation in large deformation frictional contact problem

Authors

  • Laurent Baillet Laboratoire de Mécanique des Contacts et des Solides, CNRS-UMR 5514 INSA de Lyon, F-69621 Villeurbanne cedex
  • Taoufik Sassi Laboratoire de Mathématiques Nicolas Oresme CNRS 6139, Université de Caen Bd du Marechal Juin, 14032 CAEN cedex

Keywords:

contact, mixed finite element, friction, dynamic explicit, mortar elements

Abstract

This paper presents a mixed variational framework and numerical examples to treat a bidimensional friction contact problem in large deformation. Two different contact algorithms with friction are developed using the 2D finite element code PLAST2. The first contact algorithm is the classical node-on-segment, and the second one corresponds to an extension of the mortar element method to a unilateral contact problem with friction. In this last method, the discretized normal and tangential stresses on the contact surface are expressed by using either continuous piecewise linear or piecewise constant Lagrange multipliers in the saddle-point formulation. The two algorithms based on Lagrange multipliers method are developed and compared for linear and quadratic elements.

Downloads

Download data is not yet available.

References

Alart P., Curnier A., “A mixed formulation for frictional contact problems prone to Newton

like solution methods”, Comp. Meth. Appl. Mech. Eng., 92, 1991, pp. 253-275.

Baillet L., Sassi T., “Finite element method with Lagrange multipliers for contact problems

with friction”, C.R. Acad. Sci. Paris, Ser. I 334, 2002, pp. 917-922.

Baillet L., Sassi T., “Numerical implementation of differents finite elements methods for

contact problems with friction”, C.R. Acad. Sci. Paris, Serie IIB Mechanic, V.331, Issue

, 2003, pp. 789-796.

Bernardi C., Maday Y. and Patera A.T., “A new nonconforming approach to domain

decomposition : the mortar element method”, Collège de France Seminar, Eds H.Brezis,

J-L. Lions Pitman, 13-51, 1994.

Bruyère K., Baillet L., Brunet M., “Fiber matrix interface modelling with different contact

and friction algorithms”, CIMNE, Edited by : D.R.J.Owen, E.Onate and E. Hinton, 1997,

pp. 1156-1161.

Chaudhary A., Bathe K.J., “A solution method for static and dynamic analysis of threedimensional

problems with friction”, Computers and Structures, Vol. 37, 1986, pp. 319-331.

Ciarlet P.G., “The finite element method for elliptic problems”, Studies in Mathematics and

its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford,

Coorevits P., Hild P., Lhalouani K., Sassi T., “Mixed finite elements methods for unilateral

problems: convergence analysis and numerical studies”, Mathematics of Computation,

Vol. 71, No. 237, 2002, pp. 1-25.

Duvaut G. et Lions J.-L., Les inéquations en mécanique et en physique, Dunod, Paris, 1972.

Haslinger J., Halavàcek I., “Approximation of Signorini problem with friction by a mixed

finite element method”, J. Math. Anal. Appl., 86, 1982, pp. 99-122.

Hild P., Problèmes de contact unilatéral et maillages éléments finis incompatibles, Thèse

No d’ordre : 2903, Doctorat de l’Université Paul Sabatier, 177 pages, 1998.

Hild P., “Numerical implementation of two nonconforming finite element methods for

unilateral contact”, Comp. Meth. Appl. Mech. Eng., 184, 2000, pp. 99-123.

Hild P., Laborde P., “Quadratic finite element methods for unilateral contact problems”,

Applied Numerical Mathematics, 41, 2002, pp. 401-421.

Klarbring A., “A mathematical programming approach to three dimensional contact problems

with friction”, Comp. Meth. Appl. Mech. Eng., Vol. 58, 1986, pp. 175-200.

Kikuchi N., Oden J.T., “Contact problems in elasticity: A study of variational Inequalities and

Finite Element Methods”, SIAM, Philadelphia, 1988.

McDevitt T.W. and Laursen T.A., “A mortar-finite element formulation for frictional contact

problem”, Int. J. Numer. Meth. Engng, 48, 2000, pp. 1525-1547.

May H.-O., “The conjugate gardient method for unilateral problems”, Computers and

structures, 12, (4), 1986, pp. 595-598.

Moussaoui M., Khodja K., “Régularité des solutions d'un problème Dirichlet-Signorini dans

un domaine polygonal plan”, Commun. Part. Diff. Eq., 17, 1992, pp. 805-826.

Raous M., Barbarin S., “Conjugate gradient for frictional contact”, Proceeding of the Contact

Mechanics International Symposium, A. Curnier (Ed.), 1992.

Rebel G., Park K. C., Felippa C.A., “A contact formulation based on localized Lagrange

multipliers: formulation and application to two-dimensional problems” International

Journal for Numerical Methods in Engineering Vol. 54, Issue: 2, 2002, pp. 263-297.

Simo J.C., Laursen T.A., “An augmented Lagrangian treatment of contact problem involving

friction”, Computers and Structures, 42, 1992, pp. 97-116.

Wriggers P., “Finite element algorithms for contact problems”, Archives of Computational

Methods in Engineering, 1995, pp. 1-49.

Wriggers P., VU Van T., Stein E., “Finite element formulation of large deformation impactcontact

problems with friction”, Computers and Structures, Vol. 37, 1990, pp. 319-331.

Zhong Z., Mackerle J., “Static problems-a review”, Engineering Comput., 9, 1992, p. 3-37.

Downloads

Published

2005-06-11

How to Cite

Baillet, L. ., & Sassi, T. . (2005). Mixed finite element formulation in large deformation frictional contact problem. European Journal of Computational Mechanics, 14(2-3), 287–304. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2239

Issue

Section

Original Article