Equilibrage en volume de calcul pour une méthode parallèle à fronts multiples
Keywords:
domain decomposition, load balancing on amount of operations, multifrontal solverAbstract
We use a parallel multiple front method for solving large sparse linear systems issued from nite element modeling. This direct solver is based on the Schur complement method and uses a domain decomposition approach. We experimentally observe that the computing time over the subdomains may vary from simple to double for equal size subdomains. We investigate a load balancing strategy that uses a model of the computational behavior of our solver to improve an initial partition. The proposed heuristics balances estimated number of operations rather than the amount of data.
Downloads
References
Amestoy P.R., Duff I.S., L'Excellent J-Y., Koster J., « A fully asynchronous multifrontal solver
using distributed dynamic scheduling », SIAM J. Matrix Anal. Appl., vol. 23, 2001, p. 15-41.
Boufet J.P., Breitkopf P., Denis C., Rassineux A., Vayssade M., « Optimal Element
Numbering Schemes for Direct Solution of Mechanical Problems using Domain
Decomposition Method », 4th ECCOMAS Solid Mechanics Conference, Espagne, 2000.
Boufet J.P., Breitkopf P., Denis C., Rassineux A., Vayssade M., « Renumérotation des
Eléments Finis par Sous-domaines pour un Solveur Parallèle Multifrontal »,
ème Colloque National en Calcul des Structures, vol. 2, Giens France, 2001, p. 699-706.
Breitkopf P., Escaig Y., « Object oriented approach and distributed nite element
simulations », Revue Européenne des Eléments Finis, vol. 7, n