Numerical study of fluid-structure interaction in supersonic regimes
Flat panel mouvement in a super-sonic fluid flow
Keywords:
fluid-structure interaction, flat panel, Navier-StokesAbstract
A numerical model of fluid-structure interaction has been developed. This numerical model allowed us to find the resonance phenomenon of the movement of an aluminium plate subjected to an eulerian supersonic flow on one of its faces. FFT of significant variables allow us to give an estimation of critical Mach number and pulsation, validated by an analytical model. Frequently neglected in the literature, an extension for the viscous fluid flow case is proposed. Thus, the plate movement amplification due to boundary layer detachment has been shown. An estimation of critical Mach number and pulsation has been given in this case, too.
Downloads
References
[BAT ] BATOZ J.-L., DHATT G., Modélisation des structures par éléments finis, Hermes.
[BIS 55] BISPLINGHOFF R. L., ASHLEY H., HALFMAN R. L., Aeroelasticity, Dover books
on physics, 1955.
[BUR 02] BURTSCHELL Y., ZEITOUN D. E., “Shock wave interactions in an axisymmetric
steady flow”, Shock Waves, , 2002.
[FAR 95] FARHAT C., LESOINNE M., MAMAN N., “Mixed explicit/implicit time integration
of coupled aeroelastic problem : three field formulation, geometrical conservation and distributed
solution”, International Journal of Numerical Methods in Fluids, vol. 21, 1995,
p. 807-835.
[FAR 96] FARHAT C., “High performance simulation of coupled nonlinear transcient aeroelastic
problem”, Actes de la 3e école d’été de modélisation numérique en thermique, Ile de
Porquerolles, Juillet 1996, p. C6 1-79.
[FAR 98] FARHAT C., LESOINNE M., TALLEC P. L., “Load and motion transfer algorithms
for fluid-structure interaction problems with non-matching discrete interfaces: momentum
and energy conservation, optimal discretization aeroelasticity.”, Computer Methods in applied
mechanics and engineering, vol. 157, 1998, p. 95-114.
[FEL 01] FELIPPA C. A., PARK K. C., FARHAT C., “Partitioned analysis of coupled mechanical
systems”, Computer Methods in applied mechanics and engineering, vol. 190, 2001,
p. 3247-3270.
[FUN 55] FUNG Y. C., An Introduction to the theory of Aeroelasticity, Wiley, 1955.
[GEU 01] GEUZAINE P., BRAOWN G., FARHAT C., “Aeroelastic dynamic analysis of a full
F-16 configuration for various flight conditions”, AIAA Journal, vol. 41, num. 3, March
, p. 363-371.
[GOR 01] GORDNIER R. E., VISBAL M. R., “Development of a three-dimensional viscous
aeroelastic solver for nonlinear panel flutter”, Journal of fluids and structures, vol. 16,
num. 4, August 2001, p. 497-527.
[HUG 87] HUGHES T. J., The finite element method. Linear static and dynamic finite element
analysis, Prentice-Hall, Englewood Cliffs, New Jersey, 1987.
[LEF 98] LEFRANÇOIS E., DHATT G., VANDROMME D., “Modèles numériques de couplage
fluide-structure”, Actes de la 4e école d’été de modélisation numérique en thermique, Ile
de Porquerolles, Juillet 1998, p. C2 57-88.
[LEF 00] LEFRANÇOIS E., DHATT G., VANDROMME D., “Numerical study of the aeroelastic
stability of an overexpanded rocket nozzle”, Revue européenne des élément finis, vol. 9,
num. 6-7, 2000, p. 727-762.
[LES 95] LESOINNE M., FARHAT C., “Geometric conservation laws for flow problems with
moving boundaries and deformable meshes, and their impact on aeroelastic computations”,
Computer Methods in applied mechanics and engineering, vol. 134, 1995, p. 71-90.
[PIP 97] PIPERNO S., FARHAT C., “Design and evaluation of staggered partionned procedures
for fluid-structure interaction simulations”, Rapport de Recherche 3241 INRIA, , 1997.
[PIP 00] PIPERNO S., FARHAT C., “Design of efficient partitioned procedures for the transient
solution of aeroelastic problems”, Revue européenne des élément finis, vol. 9, num. 6-7,
, p. 655-680.
[SOD 78] SOD G., “A survey of several finite difference method for systems of nonlinear
hyperbolic conservation laws.”, J Comput Phys, vol. 27, 1978, p. 1-31.
[TOR 97] TORO E. F., Riemann solvers and numerical methods for fluid dynamics, Springer,