Implémentation éléments finis d’une condition optimale de préservation de l’orientation
Cas du contact en grandes déformations hyperélastiques
Keywords:
orientation preservation, compressible hyperelasticity, Blatz-Ko model, contact mechanicsAbstract
For the Blatz-Ko compressible hyperelastic model, an orientation preservation defect leads to the divergence of the Newton-Raphson algorithm. It is thus important to find a criterion in order to detect such a defect during a numerical calculation. In this paper, we propose a criterion based on the change of sign of the deformation gradient matrix eigenvalues between the deformed and undeformed configurations. It is shown that this criterion does not depend on the geometry and the loading and that it allows an optimal convergence. Its implementation in a finite element software is presented. Finally, this criterion is validated on several examples. One of these examples deals with the contact problem between two deformable hyperelastic bodies.
Downloads
References
Belytschko T, Liu Wk, Moran B., Nonlinear finite elements for continua and structures.
Chichester (UK): Wiley, 2000.
Blatz P.J., Ko W.L., “Application of finite elastic theory to the deformation of rubbery
materials”, Transactions of the Society of Rheology, vol. 6, 1962, p. 223-251.
Ciarlet P.G., Mathematical Elasticity, vol. 1, Three-dimensional elasticity, North-Holland,
Crisfield Ma., Non-linear finite element analysis of solid and structures, Chichester (UK),
Wiley, 1991.
De Saxcé G., Feng Z.Q., “The bipotential method : a constructive approach to design the
complete contact law with friction and improved numerical algorithms”, Int. J. of
Mathematical and Computer Modeling, special issue, Recent Advances in Contact
Mechanics, 28, n° 4-8, 1962, p. 225-245.
Feng Z.Q., Domaszewski M., “Coupled treatment of frictional contact problems in a reduced
system and applications in large deformation context”, 2nd Contact Mechanics
International Symposium, Carry-Le-Rouet, France, (September 19-23, 1994), Contact
Mechanics, Ed. Raous et al. Plenum Press, p. 169-172, 1995.
Feng Z.Q., “2D or 3D frictional contact algorithms and applications in a large deformation
context”, Numerical Methods in Engineering, 11, p. 409-416, 1995.
Peyraut F., Labed N., “Préservation de l’orientation et convergence de Newton-Raphson avec
le modèle hyperélastique compressible de Blatz-Ko”, Revue Européenne des Eléments
Finis, vol. 10, n° 5, 2001, p. 595-6051.
Peyraut F., “Orientation preservation and Newton-Raphson convergence in the case of an
hyperelastic sphere subjected to an hydrostatic pressure,” Computer Methods in Applied
Mechanics and Engineering, 192, n° 9-10, 2003, p. 1107-1117.
Peyraut F., Labed N., « Condition de préservation de l’orientation - application en
hyperélasticité compressible », Revue Européenne des Eléments Finis, n° 1, vol. 12, 2003,
p. 99 -116.
Renaud C., Feng Z.Q., “BEM and FEM analysis of Signorini contact problems with friction”,
Computational Mechanics, 51, n° 5, p. 390-399, 2003.
Sidoroff F., Cours sur les grandes déformations, Rapport GRECO, n° 51, 1982.
Wineman A.S., Waldron Jr W.K., “Normal stress effects induced during circular shear of a
compressible non-linear elastic cylinder”, Int. J. Non-Linear Mechanics, vol. 30, n° 3,
p. 323-339, 1995.
Wood Rd, Zienkiewicz Oc., “Geometrically nonlinear finite element analysis of beams,
frames, arches and axisymmetric shells”, Comput & Struct, 7, 1977, p. 725-735.