Implémentation éléments finis d’une condition optimale de préservation de l’orientation

Cas du contact en grandes déformations hyperélastiques

Authors

  • François Peyraut Laboratoire M3M, Université de Technologie de Belfort-Montbéliard (UTBM) Rue de Leupe, Sévenans, F-90010 Belfort cedex
  • Zhi-Qiang Feng Laboratoire de Mécanique d’Evry, Université d’Evry-Val d’Essonne 40, rue du Pelvoux, F-91020 Evry cedex

Keywords:

orientation preservation, compressible hyperelasticity, Blatz-Ko model, contact mechanics

Abstract

For the Blatz-Ko compressible hyperelastic model, an orientation preservation defect leads to the divergence of the Newton-Raphson algorithm. It is thus important to find a criterion in order to detect such a defect during a numerical calculation. In this paper, we propose a criterion based on the change of sign of the deformation gradient matrix eigenvalues between the deformed and undeformed configurations. It is shown that this criterion does not depend on the geometry and the loading and that it allows an optimal convergence. Its implementation in a finite element software is presented. Finally, this criterion is validated on several examples. One of these examples deals with the contact problem between two deformable hyperelastic bodies.

Downloads

Download data is not yet available.

References

Belytschko T, Liu Wk, Moran B., Nonlinear finite elements for continua and structures.

Chichester (UK): Wiley, 2000.

Blatz P.J., Ko W.L., “Application of finite elastic theory to the deformation of rubbery

materials”, Transactions of the Society of Rheology, vol. 6, 1962, p. 223-251.

Ciarlet P.G., Mathematical Elasticity, vol. 1, Three-dimensional elasticity, North-Holland,

Crisfield Ma., Non-linear finite element analysis of solid and structures, Chichester (UK),

Wiley, 1991.

De Saxcé G., Feng Z.Q., “The bipotential method : a constructive approach to design the

complete contact law with friction and improved numerical algorithms”, Int. J. of

Mathematical and Computer Modeling, special issue, Recent Advances in Contact

Mechanics, 28, n° 4-8, 1962, p. 225-245.

Feng Z.Q., Domaszewski M., “Coupled treatment of frictional contact problems in a reduced

system and applications in large deformation context”, 2nd Contact Mechanics

International Symposium, Carry-Le-Rouet, France, (September 19-23, 1994), Contact

Mechanics, Ed. Raous et al. Plenum Press, p. 169-172, 1995.

Feng Z.Q., “2D or 3D frictional contact algorithms and applications in a large deformation

context”, Numerical Methods in Engineering, 11, p. 409-416, 1995.

Peyraut F., Labed N., “Préservation de l’orientation et convergence de Newton-Raphson avec

le modèle hyperélastique compressible de Blatz-Ko”, Revue Européenne des Eléments

Finis, vol. 10, n° 5, 2001, p. 595-6051.

Peyraut F., “Orientation preservation and Newton-Raphson convergence in the case of an

hyperelastic sphere subjected to an hydrostatic pressure,” Computer Methods in Applied

Mechanics and Engineering, 192, n° 9-10, 2003, p. 1107-1117.

Peyraut F., Labed N., « Condition de préservation de l’orientation - application en

hyperélasticité compressible », Revue Européenne des Eléments Finis, n° 1, vol. 12, 2003,

p. 99 -116.

Renaud C., Feng Z.Q., “BEM and FEM analysis of Signorini contact problems with friction”,

Computational Mechanics, 51, n° 5, p. 390-399, 2003.

Sidoroff F., Cours sur les grandes déformations, Rapport GRECO, n° 51, 1982.

Wineman A.S., Waldron Jr W.K., “Normal stress effects induced during circular shear of a

compressible non-linear elastic cylinder”, Int. J. Non-Linear Mechanics, vol. 30, n° 3,

p. 323-339, 1995.

Wood Rd, Zienkiewicz Oc., “Geometrically nonlinear finite element analysis of beams,

frames, arches and axisymmetric shells”, Comput & Struct, 7, 1977, p. 725-735.

Downloads

Published

2004-06-11

How to Cite

Peyraut, F., & Feng, Z.-Q. (2004). Implémentation éléments finis d’une condition optimale de préservation de l’orientation: Cas du contact en grandes déformations hyperélastiques. European Journal of Computational Mechanics, 13(8), 899–914. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2281

Issue

Section

Original Article