Level-Sets and Arlequin framework for dynamic contact problems
Keywords:
level-sets, contact, impact, Lagrange velocity formulation, Arlequin methodAbstract
By introducing unknown Level-Sets fields on contact interface, the Signorini-Moreau dynamic contact conditions are written as equations. From this, a new continuous hybrid weakstrong formulation for dynamic contact between deformable solids is derived. In the global problem, the Level-Sets like fields are the intrinsic contact unknown ones. This problem is discretized by means of time, space and collocation schemes. Some numerical experimentations are carried out, showing the effectiveness of our approach. The paper is ended by showing a promising application of the multiscale Arlequin method to the multiscale impact problems.
Downloads
References
[ARM98] ARMERO F., PETOCZ E., “Formulation and analysis of conserving algorithms for
frictionless dynamic contact/impact problems”, Comp. Meth. Appl. Mech. Eng., vol. 158,
p. 269-300.
[BEN88] BEN DHIA H.,“Modelling and solution by penalty dualty method of unilateral contact
problems”, Calcul des structures et intelligence artificielle, vol. 2, p. 1-18.
[BEN95] BEN DHIA H., DURVILLE D., “Calembour: An implicit method based on enriched
kinematical thin plate model for sheet metal forming simulation”, J. of Materials processing
technology, vol. 50, p. 70-80.
[BEN98] BEN DHIA H., “Multiscale mechanical problems: The Arlequin method”, C. R.
Acad. Sci. Paris, vol. 326, Ser. IIb, p. 899-904.
[BEN02] BEN DHIA H., ZARROUG M., “Hybrid frictional contact particles-in elements”, Revue
Europeene des Elements Finis, vol. 9, p. 417-430.
[BEN03] BEN DHIA H., ZAMMALI C., VOLDOIRE F., LAMARCHE S.,“Modèles et schémas
mixtes pour le contact en dynamique”, Actes du 6e colloque du calcul des structures, Giens,
-28 May 2003, p. 385-392.
[CAR91] CARPENTER N.J., TAYLOR R.L., KATONA M.G., “Lagrange constraints for transient
finite element surface contact”, Int. J. Num. Meth. Eng., vol. 32, p. 103-128.
[HUG76] HUGHES T.J.R., TAYLOR R.L., SACKMAN J.L., CURNIER A., WANOKNUKULCHAI
W., “A finite element method for a class of contact-impact problems”, Comp. Meth.
Appl. Mech. Eng., vol. 8, p. 249-276.
[KLA95] KLARBRING A., “Large displacement frictional contact: a continuum framework
for finite element discretization”, Euro. J. Mech. A/Solids, vol. 14, p. 237-253.
[LAU02] LAURSEN T.A., LOVE G.R., “Improved implicit integrators for transient impact
problems-geometric admissibility within the conserving framework”, Int. J. Num. Meth.
Eng., vol. 53, p. 245-274.
[MOR88] MOREAU J.J., “Unilateral contact and dry friction in finite freedom dynamics”,
In Non Smooth Mechanics and Applications, Springer-Verlag (Wien/New-York), vol. 302,
p. 1-82.
[MOR00] MOREAU J.J., “Contact and friction in the dynamics of rigid body system”, Revue
Europeene des Elements Finis, vol. 9, p. 9-28.
[SET96] SETHIAN J.A., Level-Set methods evolving interfaces in geometry, fluid mechanics,
computer vision and materials science, Cambridge University Press, 1996.
[SIM92] SIMO J.C., TARNOW N., “The discrete energy-momentum method. Part I – Conserving
algorithm for nonlinear elastodynamics ”, Zeit. Ang. Math. Phys., vol. 43, p. 757-793.
[VOL98] VOLA D., PRATT E., JEAN M., RAOUS M., “Consistent time discretization for a
dynamic frictional contact problem and complementary techniques”, Revue Europeene des
Elements Finis, vol. 7, p. 149-162.