Optimisation de maillage surfacique de pièces mécaniques par une méthode diffuse inverse

Authors

  • Cédric Chappuis ESI-Software/Laboratoire Roberval, UMR CNRS-UTC 6066 and Université de Technologie de Compiègne, Laboratoire Roberval, FRE 2833
  • Alain Rassineux Université de Technologie de Compiègne, Laboratoire Roberval, FRE 2833
  • Piotr Breitkopf Université de Technologie de Compiègne, Laboratoire Roberval, FRE 2833
  • Pierre Villon Université de Technologie de Compiègne, Laboratoire Roberval, FRE 2833

Keywords:

surface mesh generation, diffuse approximation, feature recognition, meshless techniques

Abstract

We propose in this paper a method to identify on a mesh geometric primitives commonly used in mechanical parts (plane, sphere, cylinder, torus, cone) in order to improve the quality of the surface remeshing. We have already presented techniques to adapt an existing surface mesh based on a meshfree technique denoted as Diffuse Interpolation. In this approach, a secondary local geometrical model is built from the mesh. From this model, principal curvatures are calculated and the type of surface can be determined from the computation of the curvatures. Some of the concepts presented here are original while others have been adapted from techniques used in reverse engineering. Our approach is not limited to feature recognition on meshes but has been extended to set of points.

Downloads

Download data is not yet available.

References

Besl P. J. and Jain R. C., “Segmentation through variable-order surface fitting”, IEEE Trans.

On Pattern Analysis and Machine Intelligence, 10, 167-192, 1988.

Breitkopf P., Rassineux A., Villon P., “Diffuse Approximation Technology: Fundamentals

and Implementation”, Revue Européenne des Eléments Finis, 11, 825-867, Hermes-

Lavoisier, 2002.

Chamoret D., Rassineux A., Villon P., Bergheau J-M., « Régularisation d’une surface de

contact par approximation diffuse », Revue Européenne des Eléments Finis, 11(1), 431-

, 2002.

Chappuis C., Rassineux A., Breitkopf P., Savignat J.M., Villon P., « Reconnaissance de

formes à partir d’un nuage de points, basée sur une interpolation diffuse de type

Hermite », 5e Colloque Natiornal en Calcul des Structures, Giens 2001.

Goulette F., Quelques outils de géométrie différentielle pour la construction automatique de

modèles CAO à partir d’images télémétriques, Thèse ENSMP, 1997.

Mantyla M., “An Introduction to Solid Modeling”, Computer Science Press Inc., 1988.

Nayroles B., Touzot G., Villon P., “Generalizing the Finite Element Method: Diffuse

Approximation and Diffuse Elements”, Computational Mechanics, 10,1992, 307-318.

Rassineux A., Villon P., Savignat J-M., Stab O., “Surface remeshing by local hermite diffuse

interpolation”, Int. J. Num. Meth. Eng., 49, 31-49, Wiley, 2000.

Rassineux A., Maillage et Approximation Diffuse, Habilitation à Diriger des Recherches, 4

décembre 2002, Ecole Doctorale de l’Université de Technologie de Compiègne.

Shakarji C. M., “Least-squares fitting algorithms of the NIST Algorithm Testing System”,

Journal of Research of the National Institute of Standards and Technology, 103, 633-641,

Downloads

Published

2004-08-27

How to Cite

Chappuis, C. ., Rassineux, A. ., Breitkopf, P. ., & Villon, P. (2004). Optimisation de maillage surfacique de pièces mécaniques par une méthode diffuse inverse. European Journal of Computational Mechanics, 13(5-7), 485–496. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2299

Issue

Section

Original Article

Most read articles by the same author(s)

<< < 1 2