Méthodologie de simulation d’impact sur un bâtiment industriel en béton armé

Authors

  • Stéphane Moulin Electricité de France Recherche et Développement, Département Analyses Mécaniques et Acoustique 1 avenue du Général de Gaulle F-92141 Clamart Cedex
  • Pierre Koechlin Electricité de France Recherche et Développement, Département Analyses Mécaniques et Acoustique 1 avenue du Général de Gaulle F-92141 Clamart Cedex
  • Serguei Potapov Electricité de France Recherche et Développement, Département Analyses Mécaniques et Acoustique 1 avenue du Général de Gaulle F-92141 Clamart Cedex
  • Eric Champain Electricité de France Division Ingénierie Nucléaire, Service Etudes et Projets Thermiques et Nucléaires 12 avenue Antoine Dutrievoz F-69628 Villeurbanne Cedex

Keywords:

impact, reinforced concrete, shells, domain decomposition

Abstract

In the context of nuclear projects, Electricité de France (EDF) studies the mechanical consequences of impact loads on reinforced concrete shell structures. We developed a numerical methodology to simulate this kind of accident. Both local behaviour in the impact zone and vibration of the whole structure are treated simultaneously even if they belong to different fields: during impact, the local behaviour is a fast dynamics issue whereas the structure shaking is a slow dynamics linear problem. To treat the physical phenomena, our modelling strategy is based on a domain decomposition method implemented into EUROPLEXUS fast dynamics software. The non-linear local behaviour is described by a material law, which uses resultant shell variables and accounts for plasticity and damage.

Downloads

Download data is not yet available.

References

Aufaure M., Chauvel D., L’Huby Y., Finite Element Modelling of Concrete Structures,

“Dynamic elastoplastic analysis of reinforced concrete slabs and application to plastic

design of some building structures”, Pineridge Press, 1985.

Badel P. B., Contribution à la simulation numérique des structures en béton armé, Thèse de

doctorat, Université Paris VI, 2001.

Batoz J.L., Dhatt G., Modélisation des structures par éléments finis, Hermès, 1990.

Casadei F., Halleux J.P., “EUROPLEXUS: a Numerical Tool for Fast Transient Dynamics with

Fluid-Structure Interaction”, SAMTECH Users Conference 2003, Toulouse, France,

February 3-4, (http://europlexus.jrc.it), 2003.

Faucher V., Méthodes de réduction en dynamique explicite multi-échelles pour l’analyse des

structures complexes sous impact, Thèse de doctorat, ENS Cachan, 2003.

Gravouil A., Combescure A., “Multi-time-step explicit-implicit method for non linear

structural dynamics”, Int. J. Num. Met. In Engrg., 1996.

Herry B., “An approach to the connection between subdomains with non matching meshes for

transient mechanical analysis”, Int. J. Num. Met. In Engrg., 2001.

Johansen K. W., Yield-line theory, Cement and concrete Association, London, 1962.

Koechlin P., Potapov S., “A global constitutive model for reinforced concrete plates”, soumis

à Journal of Engineering Mechanics, 2004.

Lemaitre J., Chaboche J.L., Mécanique des matériaux solides, Dunod, 1988.

Moulin S., Faucher V., Rapport interne EDF R&D HT/62/01/029/B, 2001.

Save M.A., Massonet C.E., De Saxce G., “Plastic limit analysis of plates, shells and disks”,

Applied Mathematics and Mechanics Vol. 43, 1997.

Waekel F., Réponse sismique transitoire, Documentation de Référence du code de calcul par

éléments finis Code_Aster, EDF R&D (www.code-aster.org), 1999.

Downloads

Published

2004-06-11

How to Cite

Moulin, S. ., Koechlin, P. ., Potapov, S. ., & Champain, E. . (2004). Méthodologie de simulation d’impact sur un bâtiment industriel en béton armé. European Journal of Computational Mechanics, 13(5-7), 605–616. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2319

Issue

Section

Original Article