Méthodologie de simulation d’impact sur un bâtiment industriel en béton armé
Keywords:
impact, reinforced concrete, shells, domain decompositionAbstract
In the context of nuclear projects, Electricité de France (EDF) studies the mechanical consequences of impact loads on reinforced concrete shell structures. We developed a numerical methodology to simulate this kind of accident. Both local behaviour in the impact zone and vibration of the whole structure are treated simultaneously even if they belong to different fields: during impact, the local behaviour is a fast dynamics issue whereas the structure shaking is a slow dynamics linear problem. To treat the physical phenomena, our modelling strategy is based on a domain decomposition method implemented into EUROPLEXUS fast dynamics software. The non-linear local behaviour is described by a material law, which uses resultant shell variables and accounts for plasticity and damage.
Downloads
References
Aufaure M., Chauvel D., L’Huby Y., Finite Element Modelling of Concrete Structures,
“Dynamic elastoplastic analysis of reinforced concrete slabs and application to plastic
design of some building structures”, Pineridge Press, 1985.
Badel P. B., Contribution à la simulation numérique des structures en béton armé, Thèse de
doctorat, Université Paris VI, 2001.
Batoz J.L., Dhatt G., Modélisation des structures par éléments finis, Hermès, 1990.
Casadei F., Halleux J.P., “EUROPLEXUS: a Numerical Tool for Fast Transient Dynamics with
Fluid-Structure Interaction”, SAMTECH Users Conference 2003, Toulouse, France,
February 3-4, (http://europlexus.jrc.it), 2003.
Faucher V., Méthodes de réduction en dynamique explicite multi-échelles pour l’analyse des
structures complexes sous impact, Thèse de doctorat, ENS Cachan, 2003.
Gravouil A., Combescure A., “Multi-time-step explicit-implicit method for non linear
structural dynamics”, Int. J. Num. Met. In Engrg., 1996.
Herry B., “An approach to the connection between subdomains with non matching meshes for
transient mechanical analysis”, Int. J. Num. Met. In Engrg., 2001.
Johansen K. W., Yield-line theory, Cement and concrete Association, London, 1962.
Koechlin P., Potapov S., “A global constitutive model for reinforced concrete plates”, soumis
à Journal of Engineering Mechanics, 2004.
Lemaitre J., Chaboche J.L., Mécanique des matériaux solides, Dunod, 1988.
Moulin S., Faucher V., Rapport interne EDF R&D HT/62/01/029/B, 2001.
Save M.A., Massonet C.E., De Saxce G., “Plastic limit analysis of plates, shells and disks”,
Applied Mathematics and Mechanics Vol. 43, 1997.
Waekel F., Réponse sismique transitoire, Documentation de Référence du code de calcul par
éléments finis Code_Aster, EDF R&D (www.code-aster.org), 1999.