Numerical Simulation of Electron Beam Welding and Instrumental Technique

Authors

  • Muriel Carin Laboratoire d’Etudes Thermiques Energétique et Environnement Université de Bretagne Sud - Centre de Recherche Rue de Saint Maudé F-56321 Lorient cedex
  • Philippe Rogeon Laboratoire d’Etudes Thermiques Energétique et Environnement Université de Bretagne Sud - Centre de Recherche Rue de Saint Maudé F-56321 Lorient cedex
  • Denis Carron Laboratoire d’Etudes Thermiques Energétique et Environnement Université de Bretagne Sud - Centre de Recherche Rue de Saint Maudé F-56321 Lorient cedex
  • Philippe Le Masson Laboratoire d’Etudes Thermiques Energétique et Environnement Université de Bretagne Sud - Centre de Recherche Rue de Saint Maudé F-56321 Lorient cedex
  • Daniel Couëdel Laboratoire d’Etudes Thermiques Energétique et Environnement Université de Bretagne Sud - Centre de Recherche Rue de Saint Maudé F-56321 Lorient cedex

Keywords:

electron beam welding, temperature measurement, metallurgy, transformation kinetics, thermal modelling, keyhole, recoil pressure

Abstract

In the present work, thermal cycles measured with thermocouples embedded in specimens are employed to validate a numerical thermometallurgical model of an Electron Beam welding process. The implemented instrumentation techniques aim at reducing the perturbations induced by the sensors in place. The numerical model is based on the definition of a heat source term linked to the keyhole geometry predicted by a model of pressure balance using the FEMLAB code. The heat source term is used by the thermometallurigal simulation carried out with the finite element code SYSWELD. Kinetics parameters are extracted from dilatometric experiments achieved in welding austenitization conditions at constant cooling rates.

Downloads

Download data is not yet available.

References

Andrews J.G., Atthey D.R., “Hydrodynamic limit to penetration of a material by a high-power

beam”, J. Phys. D: Appl. Phys., vol. 9, 1976, p. 2181-2194.

Arata Y., “Evaluation of beam characteristics by the ab test method”, Plasma, electron and

laser beam technology, Metals Park, Ohio/USA: American Society for Metals, 1986,

p. 177-189.

Carron D., Rogeon P. et al., “Modelisation of metallurgical phase transformations in heat

affected zone by using dilatometric experiments achieved in a EBW austenitizing

conditions”, Mathematical modelling of weld phenomena 6 Eds H. Cerjak, H.K.D.H.

Bhadeshia, Institute of materials, 2002, p. 391-409.

Costantini M. , Simulation numérique du soudage par faisceau d’électrons. Contribution au

développement d’un modèle prédictif de l’apport d’énergie, Ph.D. dissertation, Univ.

Paris 6, 1996.

Dumord E., Modélisation du soudage continu par faisceau de haute énergie : application au

cas du soudage par laser Nd :YAG d’un acier X5 Cr.Ni 18-10, Ph.D. dissertation, Univ.

Bourgogne, 1996.

Fabbro R., Chouf K., “Keyhole modeling during laser welding”, J. Appl. Phys., vol. 87, n°9,

, p. 4075-4083.

Giedt W.H., Tallerico L.N., “Prediction of Electron Beam depth of penetration”, Welding

Research Supplement, Dec, 1988, p. 299s-305s.

Grignon C., Petitpas E., Pertinet R., Condoure J., « Modélisation thermométallurgique

appliquée au soudage laser des aciers », Int. J. Therm. Sci., vol. 40, 2001, p. 669-680.

Jin Xiangzhong, Li Lijun, “An experimental study on the keyhole shapes in laser deep

penetration welding”, Optics and Lasers in Engineering, In press, 2003.

Jüptner W., “Untersuchungen zum einbrandverhalten eines elektronenstrahls unter

berocksichtigungs der strahlgeometrie”, Genahmigte dissartation, Univ. Hannover, 1975.

Jüptner W., Franz Th., Sikau J., Sepold G., “Laser Interaction with Plasma during Material

Processing”, Laser physics, vol. 7, 1997, p. 202-207.

Kaplan A., “A model of deep penetration laser welding based on calculation of the keyhole

profile”, J. Phys. D: Appl. Phys., vol 27, 1994, p. 1805-1814.

Ki H., Mohanty P.S., Mazumder J., “Modelling of high-density laser-material interaction

using fast level set method”, J. Phys. D: Appl. Phys., vol 34, 2001, p. 364-372.

Konkol P.J., Smith P.M., Willebrand C.F., Connor L.P., “Parameter study of Electron-Beam

Welding”, Welding Journal, Nov. 1971, p. 765-776.

Kroos J., Gratzke U., Simon G., “Towards a self-consistent model of the keyhole in

penetration laser beam welding”, J. Phys., D: Appl. Phys., vol. 26, 1993, p. 474-480.

Leblond J.B, Devaux J., “A new kinetic model for anisothermal metallurgical transformations

in steels including effect of austenite grain size”, Acta metall., vol.32, 1984, p. 137-146.

Matsuhiro Y., Inaba Y., Ohji T. “Mathematical modelling of laser welding with a keyhole:

modelling of laser welding (Part1)”, Welding International, vol.8, n°4, 1994, p. 286-291.

Matsunawa A., Semak V., “The simulation of front keyhole wall dynamics during laser

welding”, J. Phys., D: Appl. Phys., vol. 30, 1997, p. 798-809.

Miyazaki T., “Material removal producted by a high-power-density electron beam”, J. Appl.

Phys., vol. 48, 1977, p. 3035-3041.

Noller F., “The stationary shapes of vapor cavity and molten zone on EB-welding”, 3rd

International Colloquium on welding and melting by electrons and laser beam, CISFFEL

Lyon, 1983, p. 89-97.

Rabier S., Développement d’un modèle éléments finis pour la simulation d’écoulements à

surface libre : application au soudage, Ph.D. dissertation, Univ. de Provence (Aix-

Marseille I), 2003.

Rogeon P., Couedel D. et al., “Numerical simulation of electron beam welding of metals :

Sensitivity study of a predictive model”, Mathematical Modelling of Weld Phenomena 5

Eds H. Cerjak, H.K.D.H. Badeshia - Institute of Materials, 1999, p. 913-943.

Rosenthal D., “The theory of moving sources of heat and its application to metal treatments”,

Trans. ASME, vol. 48, Nov. 1946, p. 849-866.

Semak V., Matsunawa A., “The role of recoil pressure in energy balance during laser

materials processing”, J. Phys., D: Appl. Phys., vol. 30, 1997, p. 2541-2552.

Semak V., Bragg W., Damkroger B., Kempka S., “Transient model for the keyhole during

laser welding”, J. Phys., D: Appl. Phys., vol. 32, 1999, p. L61-L64.

Solana P., Ocana J.L., “A mathematical model for penetration laser welding as a freeboundary

problem”, J. Phys., D: Appl. Phys., vol. 30, 1997, p. 1300-1313.

Van Schijndel A.W.M., “Modeling and solving building physics problems with FemLab”,

Building and Environment, vol. 38, 2003, p. 319-327.

Wei P.S., Wu T.H., Chow Y.T., “Investigation of high-intensity beam characteristics on

welding cavity shape and temperature distribution”, J. Heat Transfer, vol. 112, 1990,

p. 163-169.

Downloads

Published

2004-07-31

How to Cite

Carin, M. ., Rogeon, P. ., Carron, D., Masson, P. L., & Couëdel, D. . (2004). Numerical Simulation of Electron Beam Welding and Instrumental Technique. European Journal of Computational Mechanics, 13(3-4), 247–267. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2349

Issue

Section

Original Article