Numerical Simulation of Electron Beam Welding and Instrumental Technique
Keywords:
electron beam welding, temperature measurement, metallurgy, transformation kinetics, thermal modelling, keyhole, recoil pressureAbstract
In the present work, thermal cycles measured with thermocouples embedded in specimens are employed to validate a numerical thermometallurgical model of an Electron Beam welding process. The implemented instrumentation techniques aim at reducing the perturbations induced by the sensors in place. The numerical model is based on the definition of a heat source term linked to the keyhole geometry predicted by a model of pressure balance using the FEMLAB code. The heat source term is used by the thermometallurigal simulation carried out with the finite element code SYSWELD. Kinetics parameters are extracted from dilatometric experiments achieved in welding austenitization conditions at constant cooling rates.
Downloads
References
Andrews J.G., Atthey D.R., “Hydrodynamic limit to penetration of a material by a high-power
beam”, J. Phys. D: Appl. Phys., vol. 9, 1976, p. 2181-2194.
Arata Y., “Evaluation of beam characteristics by the ab test method”, Plasma, electron and
laser beam technology, Metals Park, Ohio/USA: American Society for Metals, 1986,
p. 177-189.
Carron D., Rogeon P. et al., “Modelisation of metallurgical phase transformations in heat
affected zone by using dilatometric experiments achieved in a EBW austenitizing
conditions”, Mathematical modelling of weld phenomena 6 Eds H. Cerjak, H.K.D.H.
Bhadeshia, Institute of materials, 2002, p. 391-409.
Costantini M. , Simulation numérique du soudage par faisceau d’électrons. Contribution au
développement d’un modèle prédictif de l’apport d’énergie, Ph.D. dissertation, Univ.
Paris 6, 1996.
Dumord E., Modélisation du soudage continu par faisceau de haute énergie : application au
cas du soudage par laser Nd :YAG d’un acier X5 Cr.Ni 18-10, Ph.D. dissertation, Univ.
Bourgogne, 1996.
Fabbro R., Chouf K., “Keyhole modeling during laser welding”, J. Appl. Phys., vol. 87, n°9,
, p. 4075-4083.
Giedt W.H., Tallerico L.N., “Prediction of Electron Beam depth of penetration”, Welding
Research Supplement, Dec, 1988, p. 299s-305s.
Grignon C., Petitpas E., Pertinet R., Condoure J., « Modélisation thermométallurgique
appliquée au soudage laser des aciers », Int. J. Therm. Sci., vol. 40, 2001, p. 669-680.
Jin Xiangzhong, Li Lijun, “An experimental study on the keyhole shapes in laser deep
penetration welding”, Optics and Lasers in Engineering, In press, 2003.
Jüptner W., “Untersuchungen zum einbrandverhalten eines elektronenstrahls unter
berocksichtigungs der strahlgeometrie”, Genahmigte dissartation, Univ. Hannover, 1975.
Jüptner W., Franz Th., Sikau J., Sepold G., “Laser Interaction with Plasma during Material
Processing”, Laser physics, vol. 7, 1997, p. 202-207.
Kaplan A., “A model of deep penetration laser welding based on calculation of the keyhole
profile”, J. Phys. D: Appl. Phys., vol 27, 1994, p. 1805-1814.
Ki H., Mohanty P.S., Mazumder J., “Modelling of high-density laser-material interaction
using fast level set method”, J. Phys. D: Appl. Phys., vol 34, 2001, p. 364-372.
Konkol P.J., Smith P.M., Willebrand C.F., Connor L.P., “Parameter study of Electron-Beam
Welding”, Welding Journal, Nov. 1971, p. 765-776.
Kroos J., Gratzke U., Simon G., “Towards a self-consistent model of the keyhole in
penetration laser beam welding”, J. Phys., D: Appl. Phys., vol. 26, 1993, p. 474-480.
Leblond J.B, Devaux J., “A new kinetic model for anisothermal metallurgical transformations
in steels including effect of austenite grain size”, Acta metall., vol.32, 1984, p. 137-146.
Matsuhiro Y., Inaba Y., Ohji T. “Mathematical modelling of laser welding with a keyhole:
modelling of laser welding (Part1)”, Welding International, vol.8, n°4, 1994, p. 286-291.
Matsunawa A., Semak V., “The simulation of front keyhole wall dynamics during laser
welding”, J. Phys., D: Appl. Phys., vol. 30, 1997, p. 798-809.
Miyazaki T., “Material removal producted by a high-power-density electron beam”, J. Appl.
Phys., vol. 48, 1977, p. 3035-3041.
Noller F., “The stationary shapes of vapor cavity and molten zone on EB-welding”, 3rd
International Colloquium on welding and melting by electrons and laser beam, CISFFEL
Lyon, 1983, p. 89-97.
Rabier S., Développement d’un modèle éléments finis pour la simulation d’écoulements à
surface libre : application au soudage, Ph.D. dissertation, Univ. de Provence (Aix-
Marseille I), 2003.
Rogeon P., Couedel D. et al., “Numerical simulation of electron beam welding of metals :
Sensitivity study of a predictive model”, Mathematical Modelling of Weld Phenomena 5
Eds H. Cerjak, H.K.D.H. Badeshia - Institute of Materials, 1999, p. 913-943.
Rosenthal D., “The theory of moving sources of heat and its application to metal treatments”,
Trans. ASME, vol. 48, Nov. 1946, p. 849-866.
Semak V., Matsunawa A., “The role of recoil pressure in energy balance during laser
materials processing”, J. Phys., D: Appl. Phys., vol. 30, 1997, p. 2541-2552.
Semak V., Bragg W., Damkroger B., Kempka S., “Transient model for the keyhole during
laser welding”, J. Phys., D: Appl. Phys., vol. 32, 1999, p. L61-L64.
Solana P., Ocana J.L., “A mathematical model for penetration laser welding as a freeboundary
problem”, J. Phys., D: Appl. Phys., vol. 30, 1997, p. 1300-1313.
Van Schijndel A.W.M., “Modeling and solving building physics problems with FemLab”,
Building and Environment, vol. 38, 2003, p. 319-327.
Wei P.S., Wu T.H., Chow Y.T., “Investigation of high-intensity beam characteristics on
welding cavity shape and temperature distribution”, J. Heat Transfer, vol. 112, 1990,
p. 163-169.