Resistance Welding Numerical Simulation

A Promising Technique

Authors

  • Thomas Dupuy Arcelor, Centre de Recherches et de Développements Métallurgiques rue du Comte Jean, Grande-Synthe, BP 2508, F-59381 Dunkerque cedex 1
  • Chainarong Srikunwong Arcelor, Centre de Recherches et de Développements Métallurgiques rue du Comte Jean, Grande-Synthe, BP 2508, F-59381 Dunkerque cedex 1 andEcole des Mines de Paris Centre des Matériaux Pierre-Marie Fourt BP 87, F-91003 Evry cedex

Keywords:

resistance welding, numerical simulation, electricity, thermics, contact resistance, coupling, sensibility, validation

Abstract

Among welding processes, resistance welding numerical simulation offers the advantage of a direct computation of heat sources through electro-thermal coupling. On the other hand, rare contact input data have to be found or measured. As for other welding processes, the general difficulty in numerical modelling is the availability of input data at all temperatures from room temperature to beyond melting point. Coupling of the first electrothermal models with mechanical models allows a good comparison between simulation and experience. Once a multiphysical validation of a model has been carried out, results like thermal cycles, weld size or residual stresses, strains and metallurgical state can be used for the purposes of process understanding, process control and weld behaviour modelling.

Downloads

Download data is not yet available.

References

Babu S.S., Santella M.L., Feng Z., Riemer B.W., Cohon J.W., “Empirical model of effects of

pressure and temperature on electrical contact resistance of metals”, Science and

Technology of Welding and Joining, 2001, vol. 6, p. 126-132.

Bentley K.P., Greenwood J.A., Knowlson P. McK., Baker R.G., “Temperature distributions

in spot welding”, British Welding Journal, Dec. 1963, p. 613-619.

Bobadilla M., Niederleander M., Nuss C., Perrin G., Selaries J., « Données thermiques pour

différentes familles d’acier », Internal Report of IRSID, Group Arcelor, June 1994.

Dupuy T., “The degradation of electrodes by spot welding zinc coated steels”, Welding in the

World, vol. 43, n°6, p. 58-68, 1998.

Dupuy T., Ferrasse S., “Influence of the type of current and materials properties on resistance

spot welding: Using a finite element model”, Trends in Welding Research 5, Pine

mountain, GA., 1998.

Dupuy T., Fardoux D., “Spot welding zinc-coated steels with medium-frequency direct

current”, Proceeding Sheet Metal Welding Conference IX, AWS, M. Kimchi and W.

Newman, eds., oct. 2000.

Faure F., Souloumiac B., Bergheau J.M., Leblond J.B., “Prediction of distortions of large thin

structures during welding using shell elements and multiscale approaches”, 7th

International Seminar Numerical Analysis of Weldability, Graz-Seggau, Austria, 29th

sept.-1st oct., 2003.

Ferrasse S., Piccavet E., “Thermal modelling of the mash seam welding process using FEM

analysis”, Mathematic Modelling of Weld Phenomena IV, H. Cerjak and H.K.D.H.

Bhadeshia, eds., The Institute of Materials London, 1998, p. 494-513.

Gedeon S.A., Eagar T.W., “Resistance spot welding of galvanized steel, part II: Mechanisms

of spot weld nugget formation”, Met. Trans. B, vol. 17B, 1986, p 887-901.

Greenwood J.A., “Temperatures in spot welding”, British Welding Journal, June 1961,

p. 316-322.

Greitmann M.J., Rother K., “Numerical simulation of the resistance spot welding process

using Spotwelder”, Mathematic Modelling of Weld Phenomena IV, H. Cerjak and

H.K.D.H. Bhadeshia, eds., The Institute of Materials London, 1998, p. 531-544.

Hahn O., Kurzok J.R., Rohde A., Thesing T., “Computer-aided dimensioning of resistancespot-

welded and mechanically joined components”, Schweissen und Schneiden, vol. 51,

N°1, 1999, p 17-23 and E13-E16.

Huh H., Kang W.J., “Electrothermal analysis of electric resistance spot welding processes by

a 3-D finite element method”, Journal of Materials Processing Technology, Vol. 63,

, p. 672-677.

ISO, “Resistance welding – Weldability – Part 2: Alternative procedures for the assessment

of sheet steels for spot welding”, prEN ISO 18278-2, 2003.

Koppenhoefer K., Crompton J.S., Wung P., Failure of spot welded coupons, Edison Welding

Institute, November 2000, summary report SR0017.

Le Meur G., Etude de la condition de liaison thermique à une interface de contact solidesolide

siège d’une dissipation par effet Joule: Application au soudage par points, PhD.

Thesis, Ecole Polytechnique de l’Université de Nantes, 2002.

Matsuyama K.I., Obert R., Chun J.H., “Inverse method for measuring weld temperatures

during resistance spot welding”, International Institute of Welding, Doc. N° III-1214-02,

Nied H.A., “The finite element modelling of the resistance spot welding process”, Welding

Research Supplementary, April 1984, p. 123s-132s.

Rice W., Funk E.J., “An analytical investigation of the temperature distributions during

resistance welding”, Welding Journal, 46(4), 1967, p. 175s-186s.

Robin V., Sanchez A., Dupuy T., Soigneux J., Bergheau J.M., “Numerical simulation of spot

welding with special attention to contact conditions”, Mathematic Modelling of Weld

Phenomena VI, H. Cerjak and H.K.D.H. Bhadeshia, eds., The Institute of Materials

London, 2002.

Silny J., Aspacher K.G., Dilthey U., Heidrich J., Ahrend M., “Elektromagnetische

Umweltverträglichkeit von Widerstandspunktschweissanlagen”, Schweissen und

Schneiden, H. 5, 2001, p. 264-271.

Sudnik V.K., Erofeev, Kudinov R.A., Dilthey U., Bohlmann H.C., “Simulation of resistance

spot welding using SPOTSIM software”, Welding International, 13(2), 1999, p. 141-146

Srikunwong C., Dupuy T., Bienvenu Y., “Numerical Simulation of Resistance Spot Welding

Process using FEA Technique”, Proceedings of 13th International Conference on

Computer Technology in Welding, June 2003, Orlando, FL.

Srikunwong C., Dupuy T., Bienvenu Y., “Influence of Electrical-Thermal Physical Properties

in Resistance Spot Welding Modelling”, 7th International Seminar Numerical Analysis of

Weldability, H. Cerjak and H.K.D.H. Bhadeshia, eds., The Institute of Materials London,

Oct. 2003, (Paper is submitted).

Tang H., Hou W., Hu S.J., Zhang, H. “Force characteristics of resistance spot welding of

steel”, Welding Research Supplementary, July 2000, p. 175s-183s.

Tang H., Hou W., Hu S.J., Zhang H., Feng Z., Kimchi M., “Influence of welding machine

mechanical characteristics on the resistance spot welding process and weld quality”,

Welding Research Supplementary, May 2003, p. 116s-124s.

Thièblemont E., Modélisation du Soudage par Points, PhD. Thèse, L’Institut National

Polytechnique de Lorraine, 1992.

Tsai C.L., Dai W.L., Dickinson D.W., Papritan J.C., “Analysis and development of a realtime

control methodology in resistance spot welding”, Welding Journal, dec. 1991,

p. 339s-351s.

Vichniakov A., Herold H., « Simulation of the projection welding process », Mathematical

Modelling of Weld Phenomena 5, H. Cerjak and H.K.D.H. Bhadeshia eds., The Institute

of Metals, London, 2001, p 961-982.

Vogler M., Investigation of resistance spot welding formation, PhD. Thesis, Stanford

University, Dec. 1992.

Vogler M. and Sheppard S., “Electrical contact resistance under high loads and elevated

temperatures”, Welding Research Supplement, June 1993, p. 231s-238s.

Watt D.F., Coon L., Bibby M., Goldak J., Henwood C., “An algorithm for modelling

microstructural development in weld heat-affected zones (Part A) Reaction kinetics”,

Acta metallurgica, Vol. 36, No. 11, 1988, p. 3029-3035.

Zhang W., Bay N., “Finite element modelling aided process design in resistance welding”,

Proceedings of 8th International Conference: Computer Technology in Welding,

University of Liverpool, June 1998.

Downloads

Published

2004-06-11

How to Cite

Dupuy, T. ., & Srikunwong, C. . (2004). Resistance Welding Numerical Simulation: A Promising Technique. European Journal of Computational Mechanics, 13(3-4), 313–341. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2355

Issue

Section

Original Article