Resistance Welding Numerical Simulation
A Promising Technique
Keywords:
resistance welding, numerical simulation, electricity, thermics, contact resistance, coupling, sensibility, validationAbstract
Among welding processes, resistance welding numerical simulation offers the advantage of a direct computation of heat sources through electro-thermal coupling. On the other hand, rare contact input data have to be found or measured. As for other welding processes, the general difficulty in numerical modelling is the availability of input data at all temperatures from room temperature to beyond melting point. Coupling of the first electrothermal models with mechanical models allows a good comparison between simulation and experience. Once a multiphysical validation of a model has been carried out, results like thermal cycles, weld size or residual stresses, strains and metallurgical state can be used for the purposes of process understanding, process control and weld behaviour modelling.
Downloads
References
Babu S.S., Santella M.L., Feng Z., Riemer B.W., Cohon J.W., “Empirical model of effects of
pressure and temperature on electrical contact resistance of metals”, Science and
Technology of Welding and Joining, 2001, vol. 6, p. 126-132.
Bentley K.P., Greenwood J.A., Knowlson P. McK., Baker R.G., “Temperature distributions
in spot welding”, British Welding Journal, Dec. 1963, p. 613-619.
Bobadilla M., Niederleander M., Nuss C., Perrin G., Selaries J., « Données thermiques pour
différentes familles d’acier », Internal Report of IRSID, Group Arcelor, June 1994.
Dupuy T., “The degradation of electrodes by spot welding zinc coated steels”, Welding in the
World, vol. 43, n°6, p. 58-68, 1998.
Dupuy T., Ferrasse S., “Influence of the type of current and materials properties on resistance
spot welding: Using a finite element model”, Trends in Welding Research 5, Pine
mountain, GA., 1998.
Dupuy T., Fardoux D., “Spot welding zinc-coated steels with medium-frequency direct
current”, Proceeding Sheet Metal Welding Conference IX, AWS, M. Kimchi and W.
Newman, eds., oct. 2000.
Faure F., Souloumiac B., Bergheau J.M., Leblond J.B., “Prediction of distortions of large thin
structures during welding using shell elements and multiscale approaches”, 7th
International Seminar Numerical Analysis of Weldability, Graz-Seggau, Austria, 29th
sept.-1st oct., 2003.
Ferrasse S., Piccavet E., “Thermal modelling of the mash seam welding process using FEM
analysis”, Mathematic Modelling of Weld Phenomena IV, H. Cerjak and H.K.D.H.
Bhadeshia, eds., The Institute of Materials London, 1998, p. 494-513.
Gedeon S.A., Eagar T.W., “Resistance spot welding of galvanized steel, part II: Mechanisms
of spot weld nugget formation”, Met. Trans. B, vol. 17B, 1986, p 887-901.
Greenwood J.A., “Temperatures in spot welding”, British Welding Journal, June 1961,
p. 316-322.
Greitmann M.J., Rother K., “Numerical simulation of the resistance spot welding process
using Spotwelder”, Mathematic Modelling of Weld Phenomena IV, H. Cerjak and
H.K.D.H. Bhadeshia, eds., The Institute of Materials London, 1998, p. 531-544.
Hahn O., Kurzok J.R., Rohde A., Thesing T., “Computer-aided dimensioning of resistancespot-
welded and mechanically joined components”, Schweissen und Schneiden, vol. 51,
N°1, 1999, p 17-23 and E13-E16.
Huh H., Kang W.J., “Electrothermal analysis of electric resistance spot welding processes by
a 3-D finite element method”, Journal of Materials Processing Technology, Vol. 63,
, p. 672-677.
ISO, “Resistance welding – Weldability – Part 2: Alternative procedures for the assessment
of sheet steels for spot welding”, prEN ISO 18278-2, 2003.
Koppenhoefer K., Crompton J.S., Wung P., Failure of spot welded coupons, Edison Welding
Institute, November 2000, summary report SR0017.
Le Meur G., Etude de la condition de liaison thermique à une interface de contact solidesolide
siège d’une dissipation par effet Joule: Application au soudage par points, PhD.
Thesis, Ecole Polytechnique de l’Université de Nantes, 2002.
Matsuyama K.I., Obert R., Chun J.H., “Inverse method for measuring weld temperatures
during resistance spot welding”, International Institute of Welding, Doc. N° III-1214-02,
Nied H.A., “The finite element modelling of the resistance spot welding process”, Welding
Research Supplementary, April 1984, p. 123s-132s.
Rice W., Funk E.J., “An analytical investigation of the temperature distributions during
resistance welding”, Welding Journal, 46(4), 1967, p. 175s-186s.
Robin V., Sanchez A., Dupuy T., Soigneux J., Bergheau J.M., “Numerical simulation of spot
welding with special attention to contact conditions”, Mathematic Modelling of Weld
Phenomena VI, H. Cerjak and H.K.D.H. Bhadeshia, eds., The Institute of Materials
London, 2002.
Silny J., Aspacher K.G., Dilthey U., Heidrich J., Ahrend M., “Elektromagnetische
Umweltverträglichkeit von Widerstandspunktschweissanlagen”, Schweissen und
Schneiden, H. 5, 2001, p. 264-271.
Sudnik V.K., Erofeev, Kudinov R.A., Dilthey U., Bohlmann H.C., “Simulation of resistance
spot welding using SPOTSIM software”, Welding International, 13(2), 1999, p. 141-146
Srikunwong C., Dupuy T., Bienvenu Y., “Numerical Simulation of Resistance Spot Welding
Process using FEA Technique”, Proceedings of 13th International Conference on
Computer Technology in Welding, June 2003, Orlando, FL.
Srikunwong C., Dupuy T., Bienvenu Y., “Influence of Electrical-Thermal Physical Properties
in Resistance Spot Welding Modelling”, 7th International Seminar Numerical Analysis of
Weldability, H. Cerjak and H.K.D.H. Bhadeshia, eds., The Institute of Materials London,
Oct. 2003, (Paper is submitted).
Tang H., Hou W., Hu S.J., Zhang, H. “Force characteristics of resistance spot welding of
steel”, Welding Research Supplementary, July 2000, p. 175s-183s.
Tang H., Hou W., Hu S.J., Zhang H., Feng Z., Kimchi M., “Influence of welding machine
mechanical characteristics on the resistance spot welding process and weld quality”,
Welding Research Supplementary, May 2003, p. 116s-124s.
Thièblemont E., Modélisation du Soudage par Points, PhD. Thèse, L’Institut National
Polytechnique de Lorraine, 1992.
Tsai C.L., Dai W.L., Dickinson D.W., Papritan J.C., “Analysis and development of a realtime
control methodology in resistance spot welding”, Welding Journal, dec. 1991,
p. 339s-351s.
Vichniakov A., Herold H., « Simulation of the projection welding process », Mathematical
Modelling of Weld Phenomena 5, H. Cerjak and H.K.D.H. Bhadeshia eds., The Institute
of Metals, London, 2001, p 961-982.
Vogler M., Investigation of resistance spot welding formation, PhD. Thesis, Stanford
University, Dec. 1992.
Vogler M. and Sheppard S., “Electrical contact resistance under high loads and elevated
temperatures”, Welding Research Supplement, June 1993, p. 231s-238s.
Watt D.F., Coon L., Bibby M., Goldak J., Henwood C., “An algorithm for modelling
microstructural development in weld heat-affected zones (Part A) Reaction kinetics”,
Acta metallurgica, Vol. 36, No. 11, 1988, p. 3029-3035.
Zhang W., Bay N., “Finite element modelling aided process design in resistance welding”,
Proceedings of 8th International Conference: Computer Technology in Welding,
University of Liverpool, June 1998.