On two matrix-free continuation approaches for the determination of the bifurcation diagram of the von Kármán system

Authors

  • Kokou Dossou Département de mathématiques et de statistique, Université Laval, Québec, Canada, G1K 7P4
  • Jean-Jacques Gervais Département de mathématiques et de statistique, Université Laval, Québec, Canada, G1K 7P4
  • Roger Pierre Département de mathématiques et de statistique, Université Laval, Québec, Canada, G1K 7P4
  • Hassan Sadiky Département de Mathématiques, Faculté des Sciences Semlalia, Université Cadi Ayyad, B.P: S.15, Marrakech, Maroc

Keywords:

Mixed finite element, Newton-GMRES, ANM, Padé approximation

Abstract

In this paper we present a combination of the asymptotic numerical continuation procedure with a preconditioned GMRES-solver as applied to the fourth-order non linear von Kármán problem. Using a mixed equal order finite element discretization, we show how our “matrix free”approach allows for an efficient determination of the non-trivial branch of the bifurcation diagram. We also show that, using a steplength estimation of Gervais and Sadiky [GER 04], one can limit himself to a third order prediction without loosing too much in the number of continuation steps.

Downloads

Download data is not yet available.

References

[ALL 90] ALLGOWER E. L., GEORG K., Numerical continuation methods, Springer-Verlag,

Berlin, 1990.

[CIA 80] CIARLET P. G., RABIER P., Les équations de von Kármán, Springer, Berlin, 1980.

[COC 94] COCHELIN B., “A path following technique via an Asymptotic Numerical Method”,

Computers and Structures, vol. 53, num. 5, 1994, p. 1181-1192.

[DOS 03] DOSSOU K., PIERRE R., “A Newton-GMRES approach for the analysis of the postbuckling

behavior of the solutions of the von Kármán equations”, SIAM Journal of scientific

computing, vol. 24, num. 6, 2003, p. 1994-2012.

[GER 97] GERVAIS J.-J., OUKIT A., PIERRE R., “Finite element analysis of the buckling and

mode jumping of a rectangular plate”, Dynam. Stability Systems, vol. 12, num. 3, 1997,

p. 161-185.

[GER 02] GERVAIS J., SADIKY H., “A new steplength control for continuation with the

asymptotic numerical method”, IMA J. Numer. Anal., vol. 22, 2002, p. 207-229.

[GER 04] GERVAIS J., SADIKY H., “A continuation method based on a high order predictor

and an adaptive steplength control”, ZAMM., vol. 84, num. 7, 2004.

[HOL 84] HOLDER E. J., SCHAEFFER D., “Boundary conditions and mode jumping in the

von Kármán equations”, SIAM J. Math. Anal., vol. 15, num. 3, 1984, p. 446-458.

[HUN 80] HUNTER C., GUERRIERI B., “Deducing the properties of singularities of functions

from their Taylor series coefficients”, SIAM J. Appl. Math., vol. 39, 1980, p. 248-263.

[KEL 77] KELLER H., “Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problem”,

RABINOWITZ P. H., Ed., Applications of bifurcation theory, Academic Press, New-

York, 1977.

[SAD 00] SADIKY H., “Une classe de méthodes de continuation utilisant le développement de

Taylor”, PhD thesis, Université Laval, Québec, Canada, 2000.

[ZAH 04] ZAHROUNI H., AGGOUNE W., BRUNELOT J., POTIER-FERRY M., “Asymptotic

numerical method for strong non-linearities”, Revue Européenne des Éléments Finis,

vol. 13, 2004.

Downloads

Published

2004-06-17

How to Cite

Dossou, K. ., Gervais, J.-J. ., Pierre, R. ., & Sadiky, H. (2004). On two matrix-free continuation approaches for the determination of the bifurcation diagram of the von Kármán system. European Journal of Computational Mechanics, 13(1-2), 141–164. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2373

Issue

Section

Original Article