Calcul parallèle-distribué pour les problèmes multiphysiques
Application à l’aéroélasticité
Keywords:
Multiphysics, parallel and distributed computing, aeroelasticity, PGMRES algorithmAbstract
A parallel-distributed computing based approach is proposed for the solution of some multiphysics problems. A functional decomposition of the global problem is used first followed by classical domain decomposition. Several technical details are presented for more clarity and for easing its implementation. All the techniques discussed in this paper are illustrated for the case of CFD-based aeroelasticity. A thorough performance study is shown along with simulation results for the Agrad 445.3 aeroelastic test case.
Downloads
References
Akin J. E., “Object Oriented Programming via Fortran 90”, Engineering Computations,
vol. 16, n° 1, 1999, p. 26-48.
Azami Y., « Réalisation d’un environnement de traitement parallèle à partir d’un
regroupement d’ordinateurs personnels », Projet de maîtrise MGL, ÉTS, 2002.
Decyk V. K., Norton C. D., Szymanski B. K., “Object-Oriented Programming with
Fortran90”, Engineering Computations, 2001.
Farhat C., High Performance Simulation of Coupled Nonlinear Transient Aeroelastic
Problems, AGARD Report R-807, Special Course on Parallel Computing in CFD
(l’Aerodynamique numérique et le calcul en parallèle), North Atlantic Treaty
Organization (NATO), October 1995.
Farhat C. and Lesoinne M., “On the accuracy, and performance of the solution of threedimensional
nonlinear transient aeroelastic problems by partitioned procedure”, AIAA-96-
, 1996.
Farhat C. and Lesoinne M., “Two efficient staggered algorithms for the serial and parallel
solution of three-dimensional nonlinear transient aeroelastic proble”, Comput. Math. Appl.
Mech. Engrg, 182, 2000, p. 499-515.
Felippa C.A., Park K.C., Farhat C., “Partitioned analysis of coupled mechanical systems”,
Comput. Math. Appl. Mech. Engrg.” vol. 190, 2001, p. 3247-3270.
Foster I., Designing and Building Parallel Programs, Concepts and tools for parallel
software engineering, Addison Wesley, 1995.
Frahat C., Lesoinne M. and LeTallec P., “Load and motion transfer algorithms for
fluid/structure interaction problems with non-matching discrete interfaces: Momentum
and energy conservation, optimal discretization and application to aeroelasticity”,
Comput. Maths. Appl. Mech. Engrg, vol. 157, 1998, p. 95-114.
Gropp W., Lusk E., Skjellum A., “Using MPI, Portable Parallel Programming with the
Message-Passing Interface”, Scientific and Engineering Computation Series, 1996.
Gupta K.K., “Development of a finite element aeroelastic analysis capability”, J. Aircraft 33,
, p. 995-1002.
Karypis G., Kumar V., “A fast and high-quality multi-level scheme for partitioning irregular
graphs”, SIAM J. Sci. Comput. 20, 1998, p. 359-392.
Kusnetov S., Lo G. C., Saad Y., “Parallel solution of general sparse linear systems using
PSPARSLIB”, in choi-Hong Lai et al., editor, domain decomposition XI, Domain
decomposition Press, Bergen, Norway, 1999, p. 455-465.
Lee-Rauch E. M., Batina J. T., « Calculation of AGARD wing 445.6 flutter using Navier-
Stokes aerodynamics », AIAA paper 93-3476, 1993.
Leopold C., Parallel and distributed computing, A survey of models, paradigms, and
approaches, John Wiley & Sons, 2001.
Quarteroni A., Valli A., Domain Decomposition Methods for Partial Differential Equations,
Oxford Science Publications, 1999.
Rifai S.M., Johan Z., Wang WP., Grisval JP., Hughes T.J.R. and Ferencz R., “Multiphysics
simulation of flow-induced vibrations and Aeroelasticity on parallel computing
platforms”, Comput. Math. Appl. Mech. Engrg., vol. 174, 1999, p. 393-417.
Saad Y., SPARSKIT: A basic tool-kit for sparse matrix computations, Report RIACS-90-20,
Research Institute for Advanced Computer Science, NASA Ames Research Center,
Moffett Field, CA, 1990.
Saad Y. & Schultz M. H., “GMRES: a generalized minimal residual algorithm for solving
nonsymmetric linear systems”, SIAM Journal on scientific and statistical computing,
vol. 7, 1996, p. 856-869.
Saad Y., “Iterative methods for sparse linear system”, PWS, 1996-2.
Saad Y., Kuznetsov S., Lo GC., Malevsky A., Chapman A., “PSPARSLIB: A Portable
Library of Parallel Sparse Iterative Solvers”, PPSC, 1997.
Soulaïmani A., Fortin M., “Finite element solution of compressible viscous flows using
conservative variables”, Comput. Maths. Appl. Mech. Engrg., vol. 190, 1994, p. 6735-
Soulaïmani A., Saad Y., “An arbitrary lagrangian Eulerian finite element formulation for
solving three-dimensional free surface flows”, Comput. Maths. Appl. Mech. Engrg.,
vol. 162, 1998, p. 79-106.
Soulaïmani A., Saad Y. and Rebaine A., “Parallelization of the edge based stabilized finite
element method using PSPARSLIB, in parallel computational fluid dynamics, towards
teraflops, optimization and Novel Formulations”, D. Keyes, A. Ecer, N. Satofuka, P. Fox
and J. Periaux editors, North-Holland, 2000, p. 397-406.
Soulaïmani A., Saad Y., Rebaine A., “An edge based stabilized finite element method for
solving compressible flows: Formulation and parallel implementation”, Comput. Math.
Appl. Mech. Engrg, vol. 190, 2001, p. 6735-6761.
Soulaïmani A., Ben Salah N., Saad Y., “Enhanced GMRES acceleration techniques for some
CFD problems”, International Journal of Computational Fluid Dynamics, vol. 16 (1),
-1, p. 1-20.
Soulaïmani A., Ben Elhajali A. and Feng Z., “Nonlinear Computational Aeroelasticity:
Formulations and Solution Algorithms”, NATO-AVT, Meeting Proceedings RTO-MP-089,
-2, p.45-01 to 45-13.
Soulaïmani A., Ben Elhajali A. and Feng Z., “A distributed computing-based methodology
for computational nonlinear aeroelasticity”, AIAA 2002-0868, 2002-3.
Soulaïmani A., Wong T., Azami Y., Ben Elhajali A., “An Object-Oriented Approach for PC
Clusters”, To appear in Information:An International Journal, 2002-4.
Yates E. C., “AGARD Standard Aeroelastic Configuration for Dynamics Response”,
Candidat Configuration I.-Wing 445.6. NASA TM 100492, 1987.