Approche pseudo inverse pour estimation des contraintes dans les pièces embouties axisymétriques
Keywords:
stress evaluation, sheet metal forming, inverse approach, loading historyAbstract
This paper deals with a new mixed algorithm based on the Inverse Approach named “Pseudo Inverse Approach”. It has been developed to take into account the deformation history: some realistic configurations are introduced to calculate the strain increments between two successive configurations. These configurations are generated by a geometrical based procedure. The total strain between the initial configuration and an intermediate configuration can be determined by the Inverse Approach. Then the strain increment between two successive configurations is obtained in order to make the stress plastic integration based on the flow theory of plasticity.
Downloads
References
Abaqus, ABAQUS user’s manual - version 6.2, Etats-Unis, Edition HKS, 2001.
Arrieux R., Boivin M., « Détermination théorique du diagramme des contraintes limites de
formage : Application aux matériaux anisotropes », European Journal Mech. Eng.
vol. 37, 1992, p. 89-96.
Batoz J.L., Guo Y.Q., Duroux P., Detraux J.M., “An efficient algorithm to estimate the large
strain in deep drawing”, NUMIFORM’89, Fort Collins, Colorado, 26-30 June 1989,
Balkema Editeur, p. 383-388.
Batoz J.L., Dhatt G., « Modélisation des structures par éléments finis », Coques, Vol. 3, Paris,
Hermès, 1992.
Batoz J.L., Narainen R., Duroux P., Guo Y.Q., “Comparison of the implicit, explicit and
inverse approaches for the estimation of the strain distribution in axisymmetrical thin
sheet”, 4th Int. Conf. on The Technology of Plasticity, Beijing, 5-12 sept., 1993, p. 1695-
Batoz J.L., Guo Y.Q., Mercier F., “The inverse approach with simple triangular shell
elements for large strain predictions of sheet metal forming parts”, Engineering
Computations, vol. 15, n° 7, 1997, p. 864-892.
Brunet M, Sabourin F., “A simplified triangular shell element with necking criterion for 3D
sheet forming analysis”, Proceedings of NUMISHEET’93, 1993, p. 229-238.
Brunet M., Sabourin F., “Simulation of necking using damage mechanics in 3-D sheet
forming analysis”, NUMISHEET’96 3rd International Conf. on Numerical Simulation of
-D Sheet Forming Processes, Dearborn, Michigan, Etats-Unis, 29 September-3 October
Choudhry S., Lee J.K., “Numerical simulation of sheet metal forming processes including
bending effects”, in D. R. Duraham and A. Saigal (Eds.), Microstructural Development
and Control in Material Processing, MD-vol. 14, ASME, 1989, p. 11.
Demeri M.Y., Lou M., Saran, M.J., “A benchmark test for springback in sheet metal
forming”, International Body Engineering Conference & Exhibition (IBEC), Cobo
Center, Detroit, Michigan, Etats-Unis, October 3-5, 2000.
Duroux P., Evaluation numérique des déformations dans les tôles embouties, Thèse de
doctorat, UTC, 1992.
Gardiner F., “The springback of metals”, Trans. of ASME, J. of Eng. Ind., 1957, p. 1-9.
Gati W., Guo Y.Q., Naceur H., Batoz J.L., “An efficient Pseudo Inverse Approach for stress
evaluation in sheet forming modeling”, NUMISHEET 2002, 5th Int. Conf. and Workshop
on Num. Simulation of 3D Sheet Forming Processes, Jeju(Cheju) Island, Korea, October
, p. 21-25.
Gati W., Approche Pseudo Inverse pour simulations rapides du procédé d’emboutissage et de
retour élastique des pièces en tôles minces, Thèse de doctorat, UTC, 2002.
Gelin J.C., Picart P., Eds. Proceedings of Numisheet’99, 4th Int. Conf. and Workshop on Num.
Simulation of 3D Sheet Forming Process, Besançon, sept. 1999.
Guo Y.Q., Batoz J.L., Detraux J.M., Duroux P., “Finite element procedures for strain
estimations of sheet metal forming parts”, Proc. I.J.N.M.E., vol. 30, 1990, p. 1385-1401.
Guo Y.Q., Batoz, J.L., Bouabdallah S., Naceur. H., “Recent developments on the Analysis
and Optimum Design of Sheet Metal Forming Parts using a Simplified Inverse
Approach”, Int. J. for Computers and Structures, vol. 78, 2000, p. 133-148.
Guo Y.Q., Gati W., Naceur H., Batoz J.L., “An efficient DKT rotation free shell element for
springback simulation in sheet metal forming”, To appear in International Journal for
Computers and Structures, 2002.
Hage Chehade I., Boivin M., “Tôles pour emboutissage, caractérisation par les courbes
limites en contraintes”, Matériaux et techniques, juin 1990.
Hu X.B., Algorithmes de résolutions pour la simulation de l’emboutissage par l’approche
inverse, Thèse de doctorat, UTC, mai 1997.
Lemaitre J., Chaboche J. L., Mécanique des matériaux solides, Paris, Ed. Dunod, 1985.
Naceur H., Contribution à l’optimisation de structures minces en présence de non linéarités
géométriques et matérielles, Thèse de doctorat, UTC, 1998.
Naceur H., Guo Y.Q., Gati W., “New enhancement in the Inverse Approach for the fast
modeling autobody stamping process”, International Journal of Computational
Engineering Science, IJCES 020709, 2002.
Narainen R., Comparaison de trois méthodes de calcul pour la simulation de l’emboutissage
des tôles axisymétriques, Thèse de doctorat, UTC, 1993.
Peric D., Owen R.J., Honnor M.E., “Simulation of thin sheet metal forming processes
employing a thin shell element”, F. E. Simulation of 3-D Sheet Metal Forming Processes
in Automotive Industry, Zurich, May 1991, p. 569-600.
Simo J.C., Fox D.D., Rifai M.S., “Formulation and computation aspects of a stress resultant
geometrically exact shell model”, Computational Mechanics 88 - Theory and
applications. Proc. Int. Conf. on Comput. Eng. Science, Atlanta, April 1988.
Stoughton T.B., “Finite element modeling of 1008 AK sheet steel stretched over a rectangular
punch with bending effects”, in Computer Modeling of Sheet Metal Forming Process,
Edited by Wang and Tang, The Metallurgical society, 1985, p. 143-159.
Wang N.M., Tang S.C., “Analysis of bending effects in sheet forming operations”, Int. J.
Num. Meth. Eng. 25, 1, 1988, p. 253-267.