Estimation des erreurs de discrétisation pour des problèmes de mécanique

Authors

  • Serge Prudhomme Institute for Computational Engineering and Sciences The University of Texas at Austin 1 University Station, C0200 Austin, Texas 78712 - U.S.A.
  • J. Tinsley Oden Institute for Computational Engineering and Sciences The University of Texas at Austin 1 University Station, C0200 Austin, Texas 78712 - U.S.A.

Keywords:

goal-oriented error estimation, residual method, lower and upper bounds, linear elasticity, vibrations

Abstract

This paper presents goal-oriented error estimators for finite element analysis of linear elasticity equations and eigenvalue problems. In these applications, it is shown that the error in the quantity of interest can be expressed in terms of the errors in the energy norm in the approximations of the primal and dual problems. Computable estimators and bounds for the error in the quantity of interest are then derived making use of known global estimators. Performance of this approach is demonstrated on several test problems.

Downloads

Download data is not yet available.

References

[AIN 97] AINSWORTH M., ODEN J. T., « A posteriori error estimation in finite element analysis

», Comput. Meth. Appl. Mech. Engrg., vol. 142, no 1–2, 1997, p. 1–88.

[AIN 00] AINSWORTH M., ODEN J. T., A Posteriori Error Estimation in Finite Element Analysis,

John Wiley & Sons, 2000.

[BAB 99] BABUŠKA I., STROUBOULIS T., GANGARAJ S. K., « Guaranteed computable

bounds for the exact error in the finite element solution Part I : One-dimensional model

problem », Comput. Meth. Appl. Mech. Engrg., vol. 176, 1999, p. 51–79.

[BAB 01] BABUŠKA I., STROUBOULIS T., The Finite Element Method and its Reliability,

Oxford University Press, 2001.

[BAN 85] BANK R. E., WEISER A., « Some a posteriori error estimators for elliptic partial

differential equations », Math. Comp., vol. 44, no 170, 1985, p. 283–301.

[BEC 96] BECKER R., RANNACHER R., « A feedback approach to error control in finite elements

methods : Basic analysis and examples », East-West J. Numer. Math., vol. 4, 1996,

p. 237–264.

[BEC 01] BECKER R., RANNACHER R., « An optimal control approach to a posteriori error

estimation in finite element methods », Acta Numerica, vol. 19, 2001, p. 1–102.

[BON 02] BONET J., HUERTA A., PERAIRE J., « The efficient computation of bounds for

functionals of finite element solutions in large strain elasticity », Comput. Meth. Appl.

Mech. Engrg., vol. 191, no 43, 2002, p. 4807–4826.

[CAR 00] CARSTENSEN C., FUNKEN S. A., « Fully reliable localized error control in the

FEM », SIAM J. Sci. Comput., vol. 21, no 4, 2000, p. 1465–1484.

[CHA 99] CHARPENTIER I., MADAY Y., PATERA A. T., « Bounds evaluation for outputs of

eigenvalue problems approximated by the overlapping modal synthesis method », C. R.

Acad. Sci. Paris – Série I, vol. 329, 1999, p. 909–914.

[CIR 98] CIRAK F., RAMM E., « A posteriori error estimation and adaptivity for linear elasticity

using the reciprocal theorem », Comput. Meth. Appl. Mech. Engrg., vol. 156, no 1–4,

, p. 351–362.

[DIE 03] DÍEZ P., PARÉS N., HUERTA A., « Recovering lower bounds of the error by postprocessing

implicit residual a posteriori error estimates », Int. J. Numer. Methods Engrg.,

vol. 56, no 10, 2003, p. 1465–1488.

[ERI 95] ERIKSSON K., ESTEP D., HANSBO P., JOHNSON C., « Introduction to adaptive

methods for differential equations », Acta Numerica, vol. 4, 1995, p. 105-158.

[GAR 84] GARTLAND, JR. E. C., « Computable pointwise error bounds and the Ritz method

in one dimension », SIAM J. Numer. Anal., vol. 21, no 1, 1984, p. 84–100.

[JOH 92] JOHNSON C., HANSBO P., « Adaptive finite element methods in computational mechanics

», Comput. Meth. Appl. Mech. Engrg., vol. 101, no 1–3, 1992, p. 143–181.

[LAD 01] LADEVÈZE P., PELLE J.-P., La Maîtrise du Calcul en Mécanique Linéaire et Non

Linéaire, Hermès, 2001.

[LAR 02] LARSSON F., HANSBO P., RUNESSON K., « Strategies for computing goal-oriented

a posteriori error measures in non-linear elasticity », Int. J. Numer. Methods Engrg., vol. 55,

no 8, 2002, p. 879–894.

[MAD 99] MADAY Y., PATERA A. T., PERAIRE J., « A general formulation for a posteriori

bounds for output functionals of partial differential equations ; application to the eigenvalue

problem », C. R. Acad. Sci. Paris – Série I, vol. 328, 1999, p. 823–828.

[MOR 01] MORIN P., NOCHETTO R. H., SIEBERT K. G., « Local problems on stars : A

posteriori error estimators, convergence, and performance », Math. Comp., vol. 72, no

, 2003, p. 1067–1097.

[ODE 00] ODEN J. T., VEMAGANTI K., « Estimation of local modeling error and goaloriented

modeling of heterogeneous materials ; Part I : error estimates and adaptive algorithms

», Journal of Computational Physics, vol. 164, 2000, p. 22–47.

[ODE 01] ODEN J. T., PRUDHOMME S., « Goal-oriented error estimation and adaptivity for

the finite element method », Computers Math. Applic., vol. 41, no 5–6, 2001, p. 735–756.

[ODE 02] ODEN J. T., PRUDHOMME S., « Estimation of modeling error in computational

Mechanics », Journal of Computational Physics, vol. 182, 2002, p. 496–515.

[ODE 03] ODEN J. T., PRUDHOMME S., WESTERMANN T., BASS J., BOTKIN M. E., « Estimation

of eigenfrequencies for elasticity and shell problems », Mathematical Models and

Methods in Applied Sciences, vol. 13, no 3, 2003, p. 323-344.

[PAR 97] PARASCHIVOIU M., PERAIRE J., PATERA A. T., « A posteriori finite element

bounds for linear-functional outputs of elliptic partial differential equations », Comput.

Meth. Appl. Mech. Engrg., vol. 150, 1997, p. 289–312.

[PRU 01] PRUDHOMME S., ODEN J. T., « Simple techniques to improve the reliability of

a posteriori error estimates for finite element approximations », Proceedings of the 2nd

European Conference on Computational Mechanics, ECCOMAS & IACM, Cracow, 2001.

[PRU 03] PRUDHOMME S., ODEN J. T., WESTERMANN T., BASS J., BOTKIN M. E., « Practical

methods for a posteriori error estimation in engineering applications », Int. J. Numer.

Methods Engrg., vol. 56, no 8, 2003, p. 1193–1224.

[RAN 98] RANNACHER R., STUTTMEIER F. T., « A posteriori error control in finite element

methods via duality techniques : Application to perfect plasticity », Comp. Mech., vol. 21,

, p. 123–133.

[STR 00a] STROUBOULIS T., BABUŠKA I., DATTA D. K., COPPS K., GANGARAJ S. K., « A

posteriori estimation and adaptive control of the error in the quantity of interest. Part I : A

posteriori estimation of the error in the von Mises stress and the stress intensity factor »,

Comput. Meth. Appl. Mech. Engrg., vol. 181, 2000, p. 261–294.

[STR 00b] STROUBOULIS T., BABUŠKA I., GANGARAJ S. K., « Guaranteed computable

bounds for the exact error in the finite element solution – Part II : bounds for the energy

norm of the error in two dimensions », Int. J. Numer. Methods Engrg., vol. 47, 2000,

p. 427–475.

[VER 96] VERFÜRTH R., A Review of A Posteriori Error Estimation and Adaptive Meshrefinement

Techniques, Wiley-Teubner, Stuttgart, 1996.

[WAL 01] WALSH T., DEMKOWICZ L., « hp boundary element modeling of the external human

auditory system - Goal oriented adaptivity with multiple load vectors », Comput. Meth.

Appl. Mech. Engrg., vol. 192, no 1–2, 2003, p. 125–146.

[ZIE 92a] ZIENKIEWICZ O. C., ZHU J. Z., « The superconvergent patch recovery and a posteriori

error estimates. Part 1 : the recovery technique », Int. J. Numer. Methods Engrg.,

vol. 33, 1992, p. 1331–1364.

[ZIE 92b] ZIENKIEWICZ O. C., ZHU J. Z., « The superconvergent patch recovery and a posteriori

error estimates. Part 2 : error estimates and adaptivity », Int. J. Numer. Methods

Engrg., vol. 33, 1992, p. 1365–1382.

Downloads

Published

2003-06-04

How to Cite

Prudhomme, S. ., & Oden, J. T. . (2003). Estimation des erreurs de discrétisation pour des problèmes de mécanique. European Journal of Computational Mechanics, 12(6), 665–689. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2405

Issue

Section

Original Article