Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

Authors

  • Vicente Mataix CIMNE (Centre Internacional de Mètodes Numèrics en Enginyeria). Edificio C1 Campus Nord, UPC, Barcelona, Spain http://orcid.org/0000-0002-6512-0009
  • Fernando G. Flores Department of Structures, Universidad Nacional de Córdoba and CONICET, Córdoba, Argentina http://orcid.org/0000-0002-7567-2691
  • Riccardo Rossi CIMNE (Centre Internacional de Mètodes Numèrics en Enginyeria). Edificio C1 Campus Nord, UPC, Barcelona, Spain http://orcid.org/0000-0003-0528-7074
  • Eugenio Oñate CIMNE (Centre Internacional de Mètodes Numèrics en Enginyeria). Edificio C1 Campus Nord, UPC, Barcelona, Spain http://orcid.org/0000-0002-0804-7095

Keywords:

Solid-shell, shell, large strain, prism, solid elements

Abstract

The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any kind of additional modification, besides the thermomechanic problem is formulated without additional assumptions. Additionally, this type of element allows the three-dimensional description of the deformable body, thus contact on both sides of the element can be treated easily. The present work consists in the development of a triangular prism element as a solid-shell, for the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation by Flores, a modified right Cauchy-Green deformation tensor (¯C ) is obtained; in the present work a modified deformation gradient (¯F) is obtained, which allows to generalise the methodology and allows to employ awide range of constitutive laws. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressiblematerials or materials with isochoric plastic flow. Some examples have been evaluated to show the good performance of the element and results.

Downloads

Download data is not yet available.

References

Abed-Meraim, F., & Combescure, A. (2009). An improved assumed strain solid-shell element

formulation with physical stabilization for geometric non-linear applications and elasticplastic

stability analysis. International Journal for Numerical Methods in Engineering, 80,

–1686.

Alexander, T., Sleight, D. W., & Wang, J. T. (2005). Effective modeling and nonlinear shell

analysis of thin membranes exhibiting structural wrinkling. Journal of Spacecraft and

Rockets, 42, 287–298. doi:10.2514/1.3915

Belytschko, T., Liu, W.K., Moran, B., & Elkhodary, K. (2014). Nonlinear finite elements for

continua and structures (2nd ed.). Chichester:Wiley.

Calvo Plaza, F.J. (2006). Simulación del flujo sanguíneo y su interacción con la pared arterial

mediante modelos de elementos finitos (PhD thesis). Caminos. Retrieved from http://oa.

upm.es/443/

Ribó R, Pasenau M, Escolano E, Ronda JSP. GiD user manual. CIMNE, Barcelona.

Dadvand P, Rossi R, Oñate E. (2010). An object-oriented environment for developing finite

element codes for multi-disciplinary applications. Arch Comput Methods Eng, 17(3):253–

de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Nonlinear finite

element analysis of solids and structures (2nd ed.).Wiley series in computational mechanics.

Wiley. Retrieved from http://onlinelibrary.wiley.com/book/10.1002/9781118375938

de Sousa, R. J.A., Cardoso, R. P. R.,Valente, R.A. F., Yoon, J.-W., Grácio, J. J., & Jorge, R. M.

N. (2005). A new one-point quadrature enhanced assumed strain (EAS) solid-shell element

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 31

with multiple integration points along thickness: Part I–geometrically linear applications.

International Journal for Numerical Methods in Engineering, 62, 952–977.

Dvorkin, E. N., & Bathe, K.-J. (1984). A continuum mechanics based four-node shell element

for general non-linear analysis. Engineering computations, 1, 77–88.

Flores, F. G. (2013a). A ‘Prism’ solid element for large strain shell analysis. Computer Methods

in Applied Mechanics and Engineering, 253, 274–286.

Flores, F. G. (2013b). Development of a non-linear triangular prism solid-shell element using

ANS and EAS techniques. Computer Methods in Applied Mechanics and Engineering, 266,

–97.

Flores, F.G. (2013c). Un elementoo prism triangular de sólido-lámina para el análisis de

grandes deformaciones. Mecánica Computacional, XXXII, 63–87.

Flores, F. G., & Oñate, E. (2011). Wrinkling and folding analysis of elastic membranes using

an enhanced rotation-free thin shell triangular element. Finite Elements in Analysis and

Design, 47, 982–990.

Flores, F. G., & Oñate, E. (2005). Improvements in the membrane behaviour of the three

node rotation-free BST shell triangle using an assumed strain approach. Computer Methods

in Applied Mechanics and Engineering, 194, 907–932. doi:10.1016/j.cma.2003.08.012.

Retrieved from http://www.sciencedirect.com/science/article/pii/S004578250400307X

Hauptmann, R., & Schweizerhof, K. (1998). A systematic development of ‘solid-shell’element

formulations for linear and non-linear analyses employing only displacement degrees of

freedom. International Journal for Numerical Methods in Engineering, 42, 49–69.

Hauptmann, R., Doll, S., Harnau, M., & Schweizerhof, K. (2001). Solid-shell’elements with

linear and quadratic shape functions at large deformations with nearly incompressible

materials. Computers & Structures, 79, 1671–1685.

Hauptmann, R., Schweizerhof, K., & Doll, S. (2000). Extension of the’solid-shell’ concept for

application to large elastic and large elastoplastic deformations. International Journal for

Numerical Methods in Engineering, 49, 1121–1141.

Klinkel, S., Gruttmann, F., & Wagner, W. (2006). A robust non-linear solid shell element

based on a mixed variational formulation. Computer Methods in Applied Mechanics and

Engineering, 195, 179–201. doi:10.1016/j.cma.2005.01.013. Retrieved from http://www.

sciencedirect.com/science/article/pii/S0045782505000435

Nobile, F. Numerical approximation of fluid-structure interaction problems with application

to haemodynamics. Retrieved from https://infoscience.epfl.ch/record/32934

Oñate, E., & Flores, F.G. (2005). Advances in the formulation of the rotation-free basic

shell triangle. Computer Methods in Applied Mechanics and Engineering, 194, 2406–2443.

Computational methods for shells. doi:10.1016/j.cma.2004.07.039. Retrieved from http://

www.sciencedirect.com/science/article/pii/S0045782504005390

Olovsson, L., Unosson, M., & Simonsson, K. (2004). Selective mass scaling for thin walled

structures modeled with tri-linear solid elements. Computational Mechanics, 34, 134–136.

doi:10.1007/s00466-004-0560-6

Parente, M., Valente, R. F., Jorge, R. N., Cardoso, R., & de Sousa, R. J. A. (2006). Sheet

metal forming simulation using EAS solid-shell finite elements. Finite Elements in Analysis

and Design, 42, 1137–1149. doi:10.1016/j.finel.2006.04.005. Retrieved from http://www.

sciencedirect.com/science/article/pii/S0168874X06000783

Schwarze, M., & Reese, S. (2011). A reduced integration solid-shell finite element based on

the EAS and the ANS concept – Large deformation problems. International Journal for

Numerical Methods in Engineering, 85, 289–329.

Schwarze, M., Vladimirov, I. N., & Reese, S. (2011). Sheet metal forming and springback

simulation by means of a new reduced integration solid-shell finite element technology.

Computer Methods in Applied Mechanics and Engineering, 200, 454–476.

Sena, J., Alves de Sousa, R., & Valente, R. (2011). On the use of EAS solid-shell formulations

in the numerical simulation of incremental forming processes. Engineering Computations,

, 287–313.

Sena, J. I., Lequesne, C., Duchene, L., Habraken, A.-M., Valente, R. A., & Alves de Sousa, R.

J. (2016). Single point incremental forming simulation with adaptive remeshing technique

using solid-shell elements. Engineering Computations, 33, 1388–1421.

Sze, K., Liu, X., & Lo, S. (2004). Popular benchmark problems for geometric

nonlinear analysis of shells. Finite Elements in Analysis and Design, 40, 1551–1569.

doi:10.1016/j.finel.2003.11.001. Retrieved from http://www.sciencedirect.com/science/

article/pii/S0168874X0300218X

Valdés, J.G.,Miquel, J.,&Oñate, E. (May 2009). Nonlinear finite element analysis of orthotropic

and prestressed membrane structures (PhD thesis), Universitat Politècnica de Catalunya,

Amsterdam, The Netherlands: doi:10.1016/j.finel.2008.11.008

Wang, P.,Chalal, H.,&Abed-Meraim, F. (2016). Quadratic solid-shell elements for nonlinear

structural analysis and sheet metal forming simulation. ComputationalMechanics, 59, 1–26.

Retrieved from https://link.springer.com/article/10.1007/s00466-016-1341-8

Downloads

Published

2018-01-01

How to Cite

Mataix, V., Flores, F. G., Rossi, R., & Oñate, E. (2018). Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran. European Journal of Computational Mechanics, 27(1), 1–32. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/245

Issue

Section

Original Article