Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
Keywords:
Solid-shell, shell, large strain, prism, solid elementsAbstract
The solid-shells are an attractive kind of element for the simulation of forming processes, due to the fact that any kind of generic 3D constitutive law can be employed without any kind of additional modification, besides the thermomechanic problem is formulated without additional assumptions. Additionally, this type of element allows the three-dimensional description of the deformable body, thus contact on both sides of the element can be treated easily. The present work consists in the development of a triangular prism element as a solid-shell, for the analysis of thin/thick shell, undergoing large deformations. The element is formulated in total Lagrangian formulation, and employs the neighbour (adjacent) elements to perform a local patch to enrich the displacement field. In the original formulation by Flores, a modified right Cauchy-Green deformation tensor (¯C ) is obtained; in the present work a modified deformation gradient (¯F) is obtained, which allows to generalise the methodology and allows to employ awide range of constitutive laws. The element is based in three modifications: (a) a classical assumed strain approach for transverse shear strains (b) an assumed strain approach for the in-plane components using information from neighbour elements and (c) an averaging of the volumetric strain over the element. The objective is to use this type of elements for the simulation of shells avoiding transverse shear locking, improving the membrane behaviour of the in-plane triangle and to handle quasi-incompressiblematerials or materials with isochoric plastic flow. Some examples have been evaluated to show the good performance of the element and results.
Downloads
References
Abed-Meraim, F., & Combescure, A. (2009). An improved assumed strain solid-shell element
formulation with physical stabilization for geometric non-linear applications and elasticplastic
stability analysis. International Journal for Numerical Methods in Engineering, 80,
–1686.
Alexander, T., Sleight, D. W., & Wang, J. T. (2005). Effective modeling and nonlinear shell
analysis of thin membranes exhibiting structural wrinkling. Journal of Spacecraft and
Rockets, 42, 287–298. doi:10.2514/1.3915
Belytschko, T., Liu, W.K., Moran, B., & Elkhodary, K. (2014). Nonlinear finite elements for
continua and structures (2nd ed.). Chichester:Wiley.
Calvo Plaza, F.J. (2006). Simulación del flujo sanguíneo y su interacción con la pared arterial
mediante modelos de elementos finitos (PhD thesis). Caminos. Retrieved from http://oa.
upm.es/443/
Ribó R, Pasenau M, Escolano E, Ronda JSP. GiD user manual. CIMNE, Barcelona.
Dadvand P, Rossi R, Oñate E. (2010). An object-oriented environment for developing finite
element codes for multi-disciplinary applications. Arch Comput Methods Eng, 17(3):253–
de Borst, R., Crisfield, M. A., Remmers, J. J. C., & Verhoosel, C. V. (2012). Nonlinear finite
element analysis of solids and structures (2nd ed.).Wiley series in computational mechanics.
Wiley. Retrieved from http://onlinelibrary.wiley.com/book/10.1002/9781118375938
de Sousa, R. J.A., Cardoso, R. P. R.,Valente, R.A. F., Yoon, J.-W., Grácio, J. J., & Jorge, R. M.
N. (2005). A new one-point quadrature enhanced assumed strain (EAS) solid-shell element
EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 31
with multiple integration points along thickness: Part I–geometrically linear applications.
International Journal for Numerical Methods in Engineering, 62, 952–977.
Dvorkin, E. N., & Bathe, K.-J. (1984). A continuum mechanics based four-node shell element
for general non-linear analysis. Engineering computations, 1, 77–88.
Flores, F. G. (2013a). A ‘Prism’ solid element for large strain shell analysis. Computer Methods
in Applied Mechanics and Engineering, 253, 274–286.
Flores, F. G. (2013b). Development of a non-linear triangular prism solid-shell element using
ANS and EAS techniques. Computer Methods in Applied Mechanics and Engineering, 266,
–97.
Flores, F.G. (2013c). Un elementoo prism triangular de sólido-lámina para el análisis de
grandes deformaciones. Mecánica Computacional, XXXII, 63–87.
Flores, F. G., & Oñate, E. (2011). Wrinkling and folding analysis of elastic membranes using
an enhanced rotation-free thin shell triangular element. Finite Elements in Analysis and
Design, 47, 982–990.
Flores, F. G., & Oñate, E. (2005). Improvements in the membrane behaviour of the three
node rotation-free BST shell triangle using an assumed strain approach. Computer Methods
in Applied Mechanics and Engineering, 194, 907–932. doi:10.1016/j.cma.2003.08.012.
Retrieved from http://www.sciencedirect.com/science/article/pii/S004578250400307X
Hauptmann, R., & Schweizerhof, K. (1998). A systematic development of ‘solid-shell’element
formulations for linear and non-linear analyses employing only displacement degrees of
freedom. International Journal for Numerical Methods in Engineering, 42, 49–69.
Hauptmann, R., Doll, S., Harnau, M., & Schweizerhof, K. (2001). Solid-shell’elements with
linear and quadratic shape functions at large deformations with nearly incompressible
materials. Computers & Structures, 79, 1671–1685.
Hauptmann, R., Schweizerhof, K., & Doll, S. (2000). Extension of the’solid-shell’ concept for
application to large elastic and large elastoplastic deformations. International Journal for
Numerical Methods in Engineering, 49, 1121–1141.
Klinkel, S., Gruttmann, F., & Wagner, W. (2006). A robust non-linear solid shell element
based on a mixed variational formulation. Computer Methods in Applied Mechanics and
Engineering, 195, 179–201. doi:10.1016/j.cma.2005.01.013. Retrieved from http://www.
sciencedirect.com/science/article/pii/S0045782505000435
Nobile, F. Numerical approximation of fluid-structure interaction problems with application
to haemodynamics. Retrieved from https://infoscience.epfl.ch/record/32934
Oñate, E., & Flores, F.G. (2005). Advances in the formulation of the rotation-free basic
shell triangle. Computer Methods in Applied Mechanics and Engineering, 194, 2406–2443.
Computational methods for shells. doi:10.1016/j.cma.2004.07.039. Retrieved from http://
www.sciencedirect.com/science/article/pii/S0045782504005390
Olovsson, L., Unosson, M., & Simonsson, K. (2004). Selective mass scaling for thin walled
structures modeled with tri-linear solid elements. Computational Mechanics, 34, 134–136.
doi:10.1007/s00466-004-0560-6
Parente, M., Valente, R. F., Jorge, R. N., Cardoso, R., & de Sousa, R. J. A. (2006). Sheet
metal forming simulation using EAS solid-shell finite elements. Finite Elements in Analysis
and Design, 42, 1137–1149. doi:10.1016/j.finel.2006.04.005. Retrieved from http://www.
sciencedirect.com/science/article/pii/S0168874X06000783
Schwarze, M., & Reese, S. (2011). A reduced integration solid-shell finite element based on
the EAS and the ANS concept – Large deformation problems. International Journal for
Numerical Methods in Engineering, 85, 289–329.
Schwarze, M., Vladimirov, I. N., & Reese, S. (2011). Sheet metal forming and springback
simulation by means of a new reduced integration solid-shell finite element technology.
Computer Methods in Applied Mechanics and Engineering, 200, 454–476.
Sena, J., Alves de Sousa, R., & Valente, R. (2011). On the use of EAS solid-shell formulations
in the numerical simulation of incremental forming processes. Engineering Computations,
, 287–313.
Sena, J. I., Lequesne, C., Duchene, L., Habraken, A.-M., Valente, R. A., & Alves de Sousa, R.
J. (2016). Single point incremental forming simulation with adaptive remeshing technique
using solid-shell elements. Engineering Computations, 33, 1388–1421.
Sze, K., Liu, X., & Lo, S. (2004). Popular benchmark problems for geometric
nonlinear analysis of shells. Finite Elements in Analysis and Design, 40, 1551–1569.
doi:10.1016/j.finel.2003.11.001. Retrieved from http://www.sciencedirect.com/science/
article/pii/S0168874X0300218X
Valdés, J.G.,Miquel, J.,&Oñate, E. (May 2009). Nonlinear finite element analysis of orthotropic
and prestressed membrane structures (PhD thesis), Universitat Politècnica de Catalunya,
Amsterdam, The Netherlands: doi:10.1016/j.finel.2008.11.008
Wang, P.,Chalal, H.,&Abed-Meraim, F. (2016). Quadratic solid-shell elements for nonlinear
structural analysis and sheet metal forming simulation. ComputationalMechanics, 59, 1–26.
Retrieved from https://link.springer.com/article/10.1007/s00466-016-1341-8