An incremental iterative solution procedure without predictor step

Authors

  • Mohammad Rezaiee Pajand Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran http://orcid.org/0000-0002-8808-0011
  • Hossein Afsharimoghadam Department of Civil Engineering, Ferdowsi University of Mashhad, Mashhad, Iran

DOI:

https://doi.org/10.1080/rezaiee@um.ac.ir

Keywords:

Structural equilibrium path, geometrically non-linear behaviour, minimisation, parabolic iterative steps, space frame

Abstract

Geometric non-linear analyses are performed utilising two main control factors, including load and displacement parameters. In this paper, a new incremental-iterative scheme without predictor step is suggested. Using the obtained constraint equation, the load factor increment is calculated. It is assumed that the path corresponding to the iterative analysis is a parabolic curve. Two different mathematical procedures are developed in order to form this new constraint equation. In the first formulation, two reasonable assumptions are considered for the parabolic path. The length of iterative steps’ curve is minimised in the second scheme. To corroborate the efficiency and capability of the proposed technique, several structures with complex non-linear behaviour are solved.

Downloads

Download data is not yet available.

References

Allgower, E. L., & Georg, K. (1979). Homotopy methods for approximating several solutions

to nonlinear systems of equations. Numerical Solution of Highly Nonlinear Problems, W.

Forster, North-Holland, 72, 253–270.

Argyris, J. H., Boni, B., Hindenlang, U., & Kleiber, M. (1982). Finite element analysis of twoand

three-dimensional elasto-plastic frames-the natural approach. Computer Methods in

Applied Mechanics and Engineering, 35(2), 221–248.

Batoz, J. L., & Dhatt, G. (1979). Incremental displacement algorithms for nonlinear problems.

International Journal for Numerical Methods in Engineering, 14(8), 1262–1267.

Bergan, P. G. (1980). Solution algorithms for nonlinear structural problems. Computers and

Structures, 12(4), 497–509.

Cardoso, E. L., & Fonseca, J. S. O. (2007). The GDC method as an orthogonal arc-length

method. Communications in Numerical Methods in Engineering, 23(4), 263–271.

Chajes, A., & Churchill, J. E. (1987). Nonlinear frame analysis by finite element methods.

Journal of Structural Engineering, ASCE, 113(6), 1221–1235.

Chan, S. L. (1988). Geometric and material non-linear analysis of beam-columns and frames

using the minimum residual displacement method. International Journal for Numerical

Methods in Engineering, 26(12), 2657–2669.

Chan, S. L., & Gu, J. X. (2000). Exact tangent stiffness for imperfect beam-column members.

Journal of Structural Engineering, ASCE, 126(9), 1094–1102.

Chang, J. T. (2004). Derivation of the higher-order stiffness matrix of a space frame element.

Finite Elements in Analysis and Design, 41(1), 15–30.

Connor, J. J., Logcher, R. D., & Chan, S. C. (1968). Nonlinear analysis of elastic framed

structures. Journal of the Structural Division, ASCE, 94(6), 1525–1547.

Crisfield, M. A. (1979). A faster modified Newton-Raphson iteration. Computer Methods in

Applied Mechanics and Engineering, 20(3), 267–278.

Crisfield, M. A. (1981). A fast incremental/iterative solution procedure that handles “snapthrough”.

Computers and Structures, 13(1), 55–62.

Fried, I. (1984). Orthogonal trajectory accession to the nonlinear equilibrium curve. Computer

Methods in Applied Mechanics and Engineering, 47(3), 283–297.

Hsiao, K. M., Horng, H. J., & Chen, Y. R. (1987). A corotational procedure that handles large

rotations of spatial beam structures. Computers and Structures, 27(6), 769–781.

Kassimali, A., & Abbasnia, R. (1991). Large deformation analysis of elastic space frames. Journal

of Structural Engineering, ASCE, 117(7), 2069–2087.

Kim, J. H., & Kim, Y. H. (2001). A predictor-corrector method for structural nonlinear analysis.

Computer Methods in Applied Mechanics and Engineering, 191(8–10), 959–974.

Krenk, S., & Hededal, O. (1995). A dual orthogonality procedure for non-linear finite element

equations. Computer Methods in Applied Mechanics and Engineering, 123(1–4), 95–107.

Krishnamoorthy, C. S., Ramesh, G., & Dinesh, K. U. (1996). Post-buckling analysis of structures

by three-parameter constrained solution techniques. Finite Elements in Analysis and Design,

(2), 109–142.

Ligaro, S. S., & Valvo, P. S. (2006). Large displacement analysis of elastic pyramidal trusses.

International Journal of Solids and Structures, 43(16), 4867–4887.

Meek, J. L., & Loganathan, S. (1989). Large displacement analysis of space-frame structures.

Computer Methods in Applied Mechanics and Engineering, 72(1), 57–75.

Meek, J. L., & Tan, H. S. (1984). Geometrically nonlinear analysis of space frames by an

incremental iterative technique. Computer Methods in Applied Mechanics and Engineering,

(3), 261–282.

Meek, J. L., & Xue, Q. (1998). A study on the instability problem for 3D frames. Computer

Methods in Applied Mechanics and Engineering, 158(3-4), 235–254.

Oran, C. (1973a). Tangent stiffness in plane frames. Journal of the Structural Division, ASCE,

(6), 973–985.

Oran, C. (1973b). Tangent stiffness in space frames. Journal of the Structural Division, ASCE,

(6), 987–1001.

Papadrakakis, M. (1983). Inelastic post‐buckling analysis of trusses. Journal of Structural

Engineering, ASCE, 109(9), 2129–2147.

Papadrakakis, M., & Ghionis, P. (1986). Conjugate gradient algorithms in nonlinear structural

analysis problems. Computer Methods in Applied Mechanics and Engineering, 59(1), 11–27.

Park, M. S., & Lee, B. C. (1996). Geometrically non-linear and elastoplastic three-dimensional

shear flexible beam element of Von-Mises-type hardening material. International Journal

for Numerical Methods in Engineering, 39(3), 383–408.

Powell, G., & Simons, J. (1981). Improved iteration strategy for nonlinear structures.

International Journal for Numerical Methods in Engineering, 17(10), 1455–1467.

Ramm, E. (1981). Strategies for tracing the nonlinear response near limit points. In W.

Wunderlich, E. Stein, & K. J. Bathe (Eds.), Nonlinear finite element analysis in structural

mechanics (pp. 63–89). Berlin, Heidelberg: Springer.

Rezaiee-Pajand, M., & Afsharimoghadam, H. (2017). Optimization formulation for nonlinear

structural analysis. International Journal of Optimization in Civil Engineering, 7(1), 109–127.

Rezaiee-Pajand, M., & Alamatian, J. (2008). Nonlinear dynamic analysis by dynamic relaxation

method. Structural Engineering and Mechanics, 28(5), 549–570.

Rezaiee-Pajand, M., & Alamatian, J. (2010). The dynamic relaxation method using new

formulation for fictitious mass and damping. Structural Engineering and Mechanics, 34(1),

–133.

Rezaiee-Pajand, M., & Alamatian, J. (2011). Automatic DR structural analysis of snap-through

and snap-back using optimized load increments. Journal of Structural Engineering, ASCE,

(1), 109–116.

Rezaiee-Pajand, M., & Boroshaki, F. (1999). A variable arc-length method. Asian Journal of

Structural Engineering, 3, 21–44.

Rezaiee-Pajand, M., & Estiri, H. (2016a). Mixing dynamic relaxation method with load factor

and displacement increments. Computers and Structures, 168, 78–91.

Rezaiee-Pajand, M., & Estiri, H. (2016b). Computing the structural buckling limit load by using

dynamic relaxation method. International Journal of Non-Linear Mechanics, 81, 245–260.

Rezaiee-Pajand, M., & Estiri, H. (2016c). A comparison of large deflection analysis of bending

plates by dynamic relaxation. Periodica Polytechnica Civil Engineering, 60(4), 619–645.

Rezaiee-Pajand, M., & Estiri, H. (2016d). Finding equilibrium paths by minimizing external

work in dynamic relaxation method. Applied Mathematical Modelling, 40, 10300–10322.

Rezaiee-Pajand, M., & Gharaei-Moghaddam, N. (2015). Analysis of 3D Timoshenko frames

having geometrical and material nonlinearities. International Journal of Mechanical Sciences,

, 140–155.

Rezaiee-Pajand, M., & Rezaee, H. (2014). Fictitious time step for the kinetic dynamic relaxation

method. Mechanics of Advanced Materials and Structures, 21(8), 631–644.

Rezaiee-Pajand, M., & Sarafrazi, S. R. (2010). Nonlinear structural analysis using dynamic

relaxation method with improved convergence rate. International Journal of Computational

Methods, 7(4), 627–654.

Rezaiee-Pajand, M., & Sarafrazi, S. R. (2011). Nonlinear dynamic structural analysis using

dynamic relaxation with zero damping. Computers and Structures, 89(13–14), 1274–1285.

Rezaiee-Pajand, M., & Taghavian-Hakkak, M. (2006). Nonlinear analysis of truss structures

using dynamic relaxation (research note). International Journal of Engineering-Transactions

B: Applications, 19(1), 11–22.

Rezaiee-Pajand, M., & Tatar, M. (2006). Some orthogonal methods for geometric nonlinear

analysis. International Journal of Engineering Science, Iran University of Science and

Technology, 17(2), 35–41 (In Persian).

Rezaiee-Pajand, M., & Tatar, M. (2009). The solution of nonlinear finite element equations

with minimizing of residual factors. Technical and Engineering Journal of Modares, 35, 17–28

(In Persian).

Rezaiee-Pajand, M., Tatar, M., & Moghaddasie, B. (2009). Some geometrical bases for

incremental-iterative methods (research note). International Journal of Engineering-

Transactions B: Applications, 22(3), 245–256.

Rezaiee-Pajand, M., Kadkhodayan, M., Alamatian, J., & Zhang, L. C. (2011). A new method

of fictitious viscous damping determination for the dynamic relaxation method. Computers

and Structures, 89(9–10), 783–794.

Rezaiee-Pajand, M., Kadkhodayan, M., & Alamatian, J. (2012). Timestep selection for dynamic

relaxation method. Mechanics Based Design of Structures and Machines, 40(1), 42–72.

Rezaiee-Pajand, M., Sarafrazi, S. R., & Rezaiee, H. (2012). Efficiency of dynamic relaxation

methods in nonlinear analysis of truss and frame structures. Computers and Structures,

–113, 295–310.

Rezaiee-Pajand, M., Ghalishooyan, M., & Salehi-Ahmadabad, M. (2013). Comprehensive

evaluation of structural geometrical nonlinear solution techniques Part I: Formulation

and characteristics of the methods. Structural Engineering and Mechanics, 48(6), 849–878.

Riks, E. (1972). The application of Newton’s method to the problem of elastic stability. Journal

of Applied Mechanics, ASCE, 39(4), 1060–1065.

Riks, E. (1979). An incremental approach to the solution of snapping and buckling problems.

International Journal of Solids and Structures, 15(7), 529–551.

Saafan, S. A. (1965). Nonlinear behavior of structural plane frames. Journal of the Structural

Division, ASCE, 89(4), 557–579.

Saffari, H., Fadaee, M. J., & Tabatabaei, R. (2008). Nonlinear analysis of space trusses using

modified normal flow algorithm. Journal of Structural Engineering, ASCE, 134(6), 998–1005.

Simons, J., Bergan, P. G., & Nygard, M. K. (1984). Hyperplane displacement control methods

in nonlinear analysis. Proceedings of the International Conference on Innovative Methods for

Nonlinear Problems, (pp. 345–364). Pineridge Press International.

Singh, H., & Singh, G. M. (1992). Non-linear analysis of frames. Computers and Structures,

(6), 1377–1379.

Spillers, W. R. (1990). Geometric stiffness matrix for space frames. Computers and Structures,

(1), 29–37.

Tezcan, S. S., & Mahapatra, B. C. (1969). Tangent stiffness matrix of space frame members.

Journal of the Structural Division, ASCE, 95(6), 1257–1270.

Toklu, Y. C. (2004). Nonlinear analysis of trusses through energy minimization. Computers

and Structures, 82(20–21), 1581–1589.

Torkamani, M. A. M., Sonmez, M., & Cao, J. (1997). Second-order elastic plane-frame analysis

using finite-element method. Journal of Structural Engineering, ASCE, 123(9), 1225–1235.

EUROPEAN JOURNAL OF COMPUTATIONAL MECHANICS 87

Wempner, G.

Downloads

Published

2018-01-01

How to Cite

Pajand, M. R., & Afsharimoghadam, H. (2018). An incremental iterative solution procedure without predictor step. European Journal of Computational Mechanics, 27(1), 58–87. https://doi.org/10.1080/rezaiee@um.ac.ir

Issue

Section

Original Article

Most read articles by the same author(s)