Résolution de l’équation de transport en milieu poreux par un schéma CVFE

Authors

  • Marie-Eve Stoeckel EDF R&D, LNHE 6, quai Watier F-78401 Chatou cedex

Keywords:

hydrogeological modeling, transfer, numerical scheme, finite elements, CVFE, storage, COUPLEX, radioactive waste

Abstract

The Control Volume Finite Elements (CVFE) is used to solve the transfer equation in porous media in the scope of nuclear waste storage in the geological setting. The main feature of this numerical scheme is the direct introduction of Darcy’s law in the convective term. The used data are hydraulic heads and permeabilities and not the usual velocity field. The boundary terms are also defined and computed more precisely as in a classic Finite Elements scheme. The CVFE has been applied to solve the COUPLEX1 modeling exercice, defined by ANDRA (the French Agency for Nuclear Waste Management) for the modeling of transfer radionucleides releasecd from a deap nuclear waste storage to the discharge areas. The results show that the CVFE scheme respects well the mass balance and is validated by the results of the COUPLEX1 exercice participants.

Downloads

Download data is not yet available.

References

ANDRA, The Couplex Test Case, 2001a.

ANDRA, Couplex Workshop CEMRACS, ANDRA DS/SR/01.0551, 2001b.

Dierssch H.J.G., « About the difference between the convective form and the divergence

form of the transport equation », Feflow white Papers, WASY, 1998.

Helming R. and Hubert R., « Comparison of Galerkin-type discretization techniques for twophase

flow in heterogeneous porous media », Advances in Water Ressources, vol. 21,

n° 8, 1998, p. 697-711.

Forsyth P.A., A control volume finite element method for local mesh refinement, SPE 18415,

Forsyth P.A., « A control volume finite element approach to NAPL groundwater

contamination », SIAM J. Sci. Stat. Comput., vol. 12, n° 5, 1991, p. 1029-1057.

Forsyth P.A., Wu Y.S. and Pruess K., « Robust numerical methods for saturated-unsaturated

flow with dry initial conditions in heterogeneous media », Advances in Water

Ressources, vol. 18, 1995, p. 25-38.

Forsyth PA, Study of unsaturated zone flow and transport models of fractured tuff, Report

TR-108536, EPRI, Palo alto, CA, 1998.

Letniowski F.W. and Forsyth P.A., « A control volume finite element method for threedimensional

NAPL groundwater contamination » R., International Journal for numerical

methods in fluids, vol. 13, 1991, p. 955-970.

Selmin V., « The node centered finite volume approach : bridge between finite differences

and finite elements », Comp. Meth. Appl. Mech. Engin., vol. 102, 1992, p. 107-138.

Sonier F. and Eymard R., Mathematical and numerical properties of control volume finite

element scheme for reservoir simulation, SPE 27267, 1993.

Unger A.J.A., Forsythia P.A. and Sudiky E.A., « Variable spatial and temporal weighting

schemes for use in multi-phase compositional problems », Advances in Water Ressources,

vol. 19, n° 1, 1996, p. 1-27.

Wu Y.S., Forsyth P.A. and Jiang H., « A consistent approach for applying numerical

boundary conditions for multiphase subsurface flow », Journal of Contaminant

Hydrology, vol. 23, p. 157-184, 1996.

Downloads

Published

2003-12-18

How to Cite

Stoeckel, M.-E. . (2003). Résolution de l’équation de transport en milieu poreux par un schéma CVFE. European Journal of Computational Mechanics, 12(2-3), 191–202. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2477

Issue

Section

Original Article