Mechanical Behavior Analysis of High Strength Concrete Beams in Architectural Design: Simplified Calculation Method of Flexural and Shear Bearing Capacity
DOI:
https://doi.org/10.13052/ejcm2642-2085.3262Keywords:
Architectural design, high-strength concrete, cracking moment, ultimate bearing capacity, shear-bearing capacityAbstract
This study advances the use of high-strength concrete beams in structural engineering by analyzing their flexural behavior. Utilizing a combination of theoretical and empirical methods, the research develops equations for calculating the cracking moment and ultimate load capacity of these beams. Key findings include a shear-bearing capacity calculation model, validated by experimental data, with discrepancies in cracking moment and ultimate load-bearing capacity formulas being only 6.16% and 1.53% respectively. These results offer significant insights for the design and analysis of high-strength concrete beams in architectural engineering, demonstrating high accuracy and stability.
Downloads
References
Rezaiee-Pajand M, Naserian R, Afsharimoghadam H. Two Ways of Solving System of Nonlinear Structural Equations[J]. European Journal of Computational Mechanics, 2020. DOI: 10.13052/EJCM2642-2085.2853.
Khoei A R, Ahmadpour T, Navidtehrani Y. An X–FEM Technique for Modeling the FRP Strengthening of Concrete Arches with a Plastic–Damage Model; Numerical and Experimental Investigations[J]. European Journal of Computational Mechanics, 2021. DOI: 10.13052/ejcm1779-7179.3011.
Chuzel-Marmot Y, Combescure A, Ortiz R. Explicit dynamics “SPH – Finite Element” coupling using the Arlequin method: Simulation of projectile’s impacts on concrete slabs[J]. European Journal of Computational Mechanics, 2008:737-748. DOI: 10.13052/REMN.17.737-748.
Zhang M H, Shim V P W, Lu G, et al. Resistance of high-strength concrete to projectile impact[J]. International Journal of Impact Engineering, 2005, 31(7):825–841. DOI: 10.1016/j.ijimpeng.2004.04.009.
Alonzo O, Barringer W L, Barton S G. Guide For Selecting Proportions For High-strength Concrete With Portland Cement And Fly Ash[J]. Aci Materials Journal, 1993, 90(3):272-283. DOI: 10.1016/0040-6090(93)90193-S.
Frederic, Legeron, Patrick, et al. Behavior of High-Strength Concrete Columns under Cyclic Flexure and Constant Axial Load[J]. ACI Structural Journal, 2000. DOI: 10.1046/j.0014-2956.2001.02460.x.
Larrard F D, Belloc A. Influence of aggregate on the compressive strength of normal and high-strength concrete[J]. Aci Materials Journal, 1997, 94(5):417–426.
Yang I H, Jon C, Kim B. Structural behavior of ultra-high performance concrete beams subjected to bending [J]. Engineering Structures, 2010, 32:3478–3487.
Fu Q, Luo L, Jin L, et al. Experimental study on stiffness of reactive powder concrete simply supported beam with high strength steel bar [J]. Industrial building, 2014, 44(8): 78–83.
Hwang S K, Yun H D, Park W S, et al. Seismic performance of high-strength concrete columns[J]. Magazine of Concrete Research, 2005.
Rols S, Mbessa M, Ambroise J, et al. Influence of Ultra-Fine Particle Type on Properties of Very-High Strength Concrete [J]. Journal of Physical Chemistry A, 1999, 103(48): 9958–9965. DOI: 10.1021/jp992 285b.
Cho Y S. Non-destructive testing of high strength concrete using spectral analysis of surface waves[J]. NDT & E International, 2003. DOI: 10.1016/S0963-8695(02)00067-1.
Bentz E C. Strength and Deformation of High-Strength Concrete Shearwalls. Paper by Firooz Emamy Farvashany, Stephen J. Foster, and B. Vijaya Rangan[J]. ACI Structural Journal, 2008, 105(6):789.
Zu K, Xiong E, Luo B. Shear strength of reinforced concrete flexural members without web reinforcement in compliance with mechanical analysis[C]//Structures. Elsevier, 2022, 43: 1668–1681.
Fathy A M, Sanz B, Sancho J M, et al. Determination of the bilinear stress-crack opening curve for normal- and high-strength concrete[J]. Fatigue & Fracture of Engineering Materials & Structures, 2010, 31(7):539–548. DOI: 10.1111/j.1460-2695.2008.01239.x.
Zhang, Ming-yi, Kou, et al. Field study of residual forces developed in pre-stressed high-strength concrete (PHC) pipe piles[J]. Canadian Geotechnical Journal, 2016. DOI: 10.1139/cgj-2015-0177.
Bo L. The cause and prevention of cracking in high strength concrete of Xiaolangdi Project’s outlet works[J]. Journal of Hydraulic Engineering, 2001. DOI: 10.3321/j.issn:0559-9350.2001.07.008.
Ahiborn T M, French C E, Leon R T. Applications of high-strength concrete to long-span prestressed bridge girders[J]. Transportation Research Record, 1995:22–30.
Hansson H. Air-blast-loaded, high-strength concrete beams[J]. Magazine of Concrete Research, 2010, 62(4):235–242. DOI: 10.1680/macr. 2010.62.4.235.
Lu Z H, Zhao Y G. An improved analytical constitutive relation for normal weight high-strength concrete[J]. International Journal of Modern Physics B, 2008, 22(31n32):5425–5430. DOI: 10.1142/S021797920805 0607.
Zhang M H, Gjorv O E. Characteristics of lightweight aggregates for high-strength concrete[J]. Aci Materials Journal, 1991, 88(2):150–158. DOI: 10.1016/0043-1648(91)90094-B.
Ansari F, Li Q B. High-strength concrete subjected to triaxial compression[J]. Aci Materials Journal, 1998, 95(6).
Azizinamini A, Stark M, Roller J J, et al. Bond Performance of Reinforcing Bars Embedded in high strength concrete[J]. Aci Structural Journal, 1993, 90(5):554–561. DOI: 10.1016/0141-0296(95)00096-P.
Zuo J, Darwin D. Splice Strength of Conventional and High Relative Rib Area Bars in Normal and High-Strength Concrete[J]. Aci Structural Journal, 2000, 97(4):630–641. DOI: 10.1007/BF02480667.
Razvi S R, Saatcioglu M. Strength and Deformability of Confined High-Strength Concrete Columns[J]. Aci Structural Journal, 1994, 91(6):678–687. DOI: 10.1021/cen-v072n039.p029.
Kodur, VKR. Performance of high strength concrete-filled steel columns exposed to fire[J]. Canadian Journal of Civil Engineering, 1998, 25(6):975–981. DOI: 10.1139/cjce-25-6-975.
Zaki S I, Metwally I M, El-Betar S A. Flexural Behavior of Reinforced High-Performance Concrete Beams Made with Steel Slag Coarse Aggregate[J]. Isrn Civil Engineering, 2011, 2011(2090–5106). DOI: 10.5402/2011/374807.
Cai G, Tsavdaridis K D, Larbi A S, et al. A Simplified Design Approach for Predicting the Flexural Behavior of TRM-Strengthened RC Beams under Cyclic Loads[J]. Construction and Building Materials, 2021. DOI: 10.1016/j.conbuildmat.2021.122799.