Simulation numérique d’écoulements en milieu poreux avec l’équation de Richards
Keywords:
porous media, unsaturated flow, Richards’ equation, finite element, seepage faceAbstract
The theory of saturated and unsaturated flow in porous media is based on Richards’ equation, a highly non-linear partial differential equation. Richards’ equation can be solved using a Picard iterative method modified to be mass conservative. A numerical resolution by the finite element method allows Richards’ equation to be solved in complex geological domains. The boundary conditions in nature are not always replicable using only the mathematical boundary conditions defined for Richards’ equation, for instance when simulating infiltration or seepage. An iterative technique developed to deal with this type of boundary condition is introduced and validated with measures from a physical model.
Downloads
References
Brooks R. H., Corey A. T., “Properties of porous media affecting fluid flow. Journal of
Irrigation and Drainage Division”, Proceeding of the America Society of Civil Engineers
, 61-88, 1966.
Celia M. A., Bouloutas E. T., Zarba R. L., “A general mass conservative solution for the
unsaturated flow equation”, Water Resources Research 26, 1483-1496, 1990.
Claxton A. J., Bates P. D., Cloke H. L., (in press), Mixing of hillslope, river and alluvial
groundwaters in lowland floodplains, Groundwater.
Darcy H., Les fontaines publiques de la ville de Dijon, Dalmont, Paris (France), 1856.
de Marsilly G., Hydrogéologie: comprendre et estimer les écoulements souterrains, Ecole des
Mines de Paris, Paris (France), 1994.
Haverkamp R., Vauclin M., Touma J., Wierenga P. J., Vachaud G., “A comparison of
numerical simulation models for one dimensional infiltration”, Soil Science Society of
America Journal 41 : 285-294, 1977.
Hervouet J.-M., Guide de programmation dans le système TELEMAC - Version 3.1, HE-
/95/013/B, EDF, Chatou (France), 1995.
Hervouet J.-M.,. TELEMAC “Modelling system: an overview”, Hydrological Processes 14 :
-2210, 2000.
Huang K., Mohanty B. P., Van Genuchten M. T., “A new convergence criterion for the
modified Picard iteration method to solve the variably saturated flow equation”, Journal of
Hydrology, 178 : 1483-1496, 1996.
Huyakorn P. S., Pinder G. E., Computational Methos in Subsurface flow, Academic Press,
New-York, 1983.
Lucille P.-E., Burnol A., Ollar Ph., “Chemtrap : a hydrogeochemical model for reactive
transport in porous media”, Hydrological Processes, 14; 2261-2277, 2000.
McCord J. T., “Application of second type boundaries in unsaturated flow modelling”, Water
Resources Research, 27 : 3257-3260, 1991.
Mosé R., Siegel P., Ackerer P., Chavent G., “Application of the mixed hybrid finite element
approximation in a groundwater flow model: luxury or necessity ?” Water Resources
Research, 30 : 3001-3012, 1994.
Neuman S. P., “Saturated-unsaturated seepage by finite elements”, Journal of the Hydraulic
Division, 99 : 2233-2250, 1973.
Rulon J., Rodway R. and Freeze R. A., “The development of multiple seepage faces on layered
slopes”, Water Resources Research, 21 : 1625-1636, 1985.
Stoeckel M.E., « Résolution de l’équation de transport en milieu poreux par un schéma
CVFE », Revue Européenne des Eléments Finis, vol. 12, n°2-3/2003, p.191-202.
Swedish Nuclear Power Inspectorate, and OECD Nuclear Energy Agency, 1988, The
International HYDROCOIN project. Level 1, Code verification : groundwater hydrology
modelling strategies for performance assessment of nuclear waste disposal, Nuclear Energy
Agency, Organisation for Economic Co-operation and Development, Paris.
Tracy F. T., “1-D, 2-D and 3-D analytical solutions of unsaturated flow in groundwater”,
Journal of Hydrology, 170 : 199-214, 1995.
Van Genuchten M. T., “A closed form equation for predicting the hydraulic conductivity of
unsaturated soils”, Soil Science Society of America Proceedings, 14 : 892-898, 1980.
Van Genuchten M. T., Nielsen D. R., “On describing and predicting the hydraulic properties of
unsaturated soils”, Annales Geophysicae, 3 : 615-628, 1985.
Zauderer E., Partial differential equations of applied mathematics, second edition, John Wiley,