Simulation numérique d’écoulements en milieu poreux avec l’équation de Richards

Authors

  • Jean-Philippe Renaud University of Bristol School of Geographical Sciences University Road, Bristol BS8 1SS Royaume-Uni
  • Hannah Cloke University of Bristol School of Geographical Sciences University Road, Bristol BS8 1SS Royaume-Uni
  • Yu Wang University of Bristol School of Geographical Sciences University Road, Bristol BS8 1SS Royaume-Uni
  • Malcolm Anderson University of Bristol School of Geographical Sciences University Road, Bristol BS8 1SS Royaume-Uni
  • Paul Wilkinson ZNA(UK) Ltd University Gate, Park Row Bristol BS1 5UB Royaume-Uni
  • Dave Lloyd ZNA(UK) Ltd University Gate, Park Row Bristol BS1 5UB Royaume-Uni

Keywords:

porous media, unsaturated flow, Richards’ equation, finite element, seepage face

Abstract

The theory of saturated and unsaturated flow in porous media is based on Richards’ equation, a highly non-linear partial differential equation. Richards’ equation can be solved using a Picard iterative method modified to be mass conservative. A numerical resolution by the finite element method allows Richards’ equation to be solved in complex geological domains. The boundary conditions in nature are not always replicable using only the mathematical boundary conditions defined for Richards’ equation, for instance when simulating infiltration or seepage. An iterative technique developed to deal with this type of boundary condition is introduced and validated with measures from a physical model.

Downloads

Download data is not yet available.

References

Brooks R. H., Corey A. T., “Properties of porous media affecting fluid flow. Journal of

Irrigation and Drainage Division”, Proceeding of the America Society of Civil Engineers

, 61-88, 1966.

Celia M. A., Bouloutas E. T., Zarba R. L., “A general mass conservative solution for the

unsaturated flow equation”, Water Resources Research 26, 1483-1496, 1990.

Claxton A. J., Bates P. D., Cloke H. L., (in press), Mixing of hillslope, river and alluvial

groundwaters in lowland floodplains, Groundwater.

Darcy H., Les fontaines publiques de la ville de Dijon, Dalmont, Paris (France), 1856.

de Marsilly G., Hydrogéologie: comprendre et estimer les écoulements souterrains, Ecole des

Mines de Paris, Paris (France), 1994.

Haverkamp R., Vauclin M., Touma J., Wierenga P. J., Vachaud G., “A comparison of

numerical simulation models for one dimensional infiltration”, Soil Science Society of

America Journal 41 : 285-294, 1977.

Hervouet J.-M., Guide de programmation dans le système TELEMAC - Version 3.1, HE-

/95/013/B, EDF, Chatou (France), 1995.

Hervouet J.-M.,. TELEMAC “Modelling system: an overview”, Hydrological Processes 14 :

-2210, 2000.

Huang K., Mohanty B. P., Van Genuchten M. T., “A new convergence criterion for the

modified Picard iteration method to solve the variably saturated flow equation”, Journal of

Hydrology, 178 : 1483-1496, 1996.

Huyakorn P. S., Pinder G. E., Computational Methos in Subsurface flow, Academic Press,

New-York, 1983.

Lucille P.-E., Burnol A., Ollar Ph., “Chemtrap : a hydrogeochemical model for reactive

transport in porous media”, Hydrological Processes, 14; 2261-2277, 2000.

McCord J. T., “Application of second type boundaries in unsaturated flow modelling”, Water

Resources Research, 27 : 3257-3260, 1991.

Mosé R., Siegel P., Ackerer P., Chavent G., “Application of the mixed hybrid finite element

approximation in a groundwater flow model: luxury or necessity ?” Water Resources

Research, 30 : 3001-3012, 1994.

Neuman S. P., “Saturated-unsaturated seepage by finite elements”, Journal of the Hydraulic

Division, 99 : 2233-2250, 1973.

Rulon J., Rodway R. and Freeze R. A., “The development of multiple seepage faces on layered

slopes”, Water Resources Research, 21 : 1625-1636, 1985.

Stoeckel M.E., « Résolution de l’équation de transport en milieu poreux par un schéma

CVFE », Revue Européenne des Eléments Finis, vol. 12, n°2-3/2003, p.191-202.

Swedish Nuclear Power Inspectorate, and OECD Nuclear Energy Agency, 1988, The

International HYDROCOIN project. Level 1, Code verification : groundwater hydrology

modelling strategies for performance assessment of nuclear waste disposal, Nuclear Energy

Agency, Organisation for Economic Co-operation and Development, Paris.

Tracy F. T., “1-D, 2-D and 3-D analytical solutions of unsaturated flow in groundwater”,

Journal of Hydrology, 170 : 199-214, 1995.

Van Genuchten M. T., “A closed form equation for predicting the hydraulic conductivity of

unsaturated soils”, Soil Science Society of America Proceedings, 14 : 892-898, 1980.

Van Genuchten M. T., Nielsen D. R., “On describing and predicting the hydraulic properties of

unsaturated soils”, Annales Geophysicae, 3 : 615-628, 1985.

Zauderer E., Partial differential equations of applied mathematics, second edition, John Wiley,

Downloads

Published

2003-12-19

How to Cite

Renaud, J.-P. ., Cloke, H. ., Wang, Y. ., Anderson, M. ., Wilkinson, P. ., & Lloyd, D. . (2003). Simulation numérique d’écoulements en milieu poreux avec l’équation de Richards. European Journal of Computational Mechanics, 12(2-3), 203–220. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2479

Issue

Section

Original Article