Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition
DOI:
https://doi.org/10.1080/17797179.2017.1306832Keywords:
Boundary Element Method, acoustics, quadrature, fast convolution, Non-Uniform Fast Fourier TransformAbstract
This paper presents the newly proposed method Sparse Cardinal Sine Decomposition that allows fast convolution on unstructured grids. We focus on its use when coupled with finite element techniques to solve acoustic problems with the (compressed) Boundary Element Method. In addition, we also compare the computational performances of two equivalent MATLAB® and Python implementations of the method. We show validation test cases in order to assess the precision of the approach. Eventually, the performance of the method is illustrated by the computation of the acoustic target strength of a realistic submarine from the Benchmark Target Strength Simulation international workshop.
Downloads
References
Alouges, F., & Aussal, M. (2014). The Sparse Cardinal Sine Decomposition and its application
for fast numerical convolution. Numerical Algorithms, 1–22.
Alouges, F., Aussal, M., Lefebvre-Lepot, A., Pigeonneau, F., & Sellier, A. (2016, May 22–27).
The Sparse Cardinal Sine Decomposition applied to Stokes integral equations. International
Conference on Multiphase Flow. 9, Florence, Italy.
Aussal, M. (2014). Méthodes numériques pour la spatialisation sonore, de la simulation à
la synthèse binaurale [Numerical methods for sound spatialisation, from simulation to
binaural synthesis] (PhD Thesis). Ecole polytechnique, Palaiseau.
Burton, A. J., & Miller, G. F. (1971). The application of integral equation methods to the
numerical solution of some exterior boundary value problems. Proceedings of the Royal
Society of London, Series A, 323, 201–210.
Dutt, A.,&Rokhlin,V. (1993). Fast Fourier transforms for nonequispaced data. SIAM Journal
of Scientific Computing, 14, 1368–1393.
Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of
Computational Physics, 73, 325–348.
Greengard, L. (1988). The rapid evaluation of potential fields in particle systems. Cambridge:
MIT press.
Greengard, L., & Lee, J. Y. (2004). Accelerating the non-uniform Fast Fourier Transform.
SIAM Review, 46, 443–455.
Hackbusch, W. (1999). A sparse matrix arithmetic based onH-matrices. Part I: Introduction
to H-matrices. Computing, 62, 89–108.
Lee, J. Y., & Greengard, L. (2005). The type 3 non-uniform FFT and its applications. Journal
of Computational Physics, 206, 1–7.
Nell, C. W., & Gilroy, L. E. (2003). An improved BASIS model for the BeTSSi submarine.
DRDC Atlantic TR, 199, 1–20.
Schneider, H.G.,Berg, R.,Gilroy, L., Karasalo, I.,MacGillivray, I.,Morshuizen, M.T.,&Volker,
A. (2003). Acoustic scattering by a submarine: Results from a benchmark target strength
simulation workshop. International Congress on Sound and Vibration, 10, 2475–2482.
Simon, J. (2003). Extension des méthodes multipoles rapides: résolution pour des seconds
membres multiples et applications aux objets diélectriques, [Extension of fast multipole
methods: solving multiple right-hand-sides and applications to dielectric objects] Thèse de
l’université de Versailles Saint-Quentin-en-Yvelines (PhD thesis). Université de Versailles
Saint-Quentin-en-Yvelines, Versaille.
Soudais, P. (1994). Iterative solution of a 3D scattering problem from arbitrary shaped multidielectric
and multi-conducting bodies. IEEE Transactions on Antennas and Propagation,
, 954—959.
Matlab. (2013). Version 8.1.0 (R2013a). Natick,MA: TheMathWorks. Retrieved from http://
www.mathworks.com
Python Software Foundation. (2016). Python language reference (Version 2.7.). Retrieved