Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition

Authors

  • François Alouges CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
  • Matthieu Aussal CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France
  • Emile Parolin CMAP, Ecole polytechnique, CNRS, Université Paris-Saclay, Palaiseau, France

DOI:

https://doi.org/10.1080/17797179.2017.1306832

Keywords:

Boundary Element Method, acoustics, quadrature, fast convolution, Non-Uniform Fast Fourier Transform

Abstract

This paper presents the newly proposed method Sparse Cardinal Sine Decomposition that allows fast convolution on unstructured grids. We focus on its use when coupled with finite element techniques to solve acoustic problems with the (compressed) Boundary Element Method. In addition, we also compare the computational performances of two equivalent MATLAB® and Python implementations of the method. We show validation test cases in order to assess the precision of the approach. Eventually, the performance of the method is illustrated by the computation of the acoustic target strength of a realistic submarine from the Benchmark Target Strength Simulation international workshop.

Downloads

Download data is not yet available.

References

Alouges, F., & Aussal, M. (2014). The Sparse Cardinal Sine Decomposition and its application

for fast numerical convolution. Numerical Algorithms, 1–22.

Alouges, F., Aussal, M., Lefebvre-Lepot, A., Pigeonneau, F., & Sellier, A. (2016, May 22–27).

The Sparse Cardinal Sine Decomposition applied to Stokes integral equations. International

Conference on Multiphase Flow. 9, Florence, Italy.

Aussal, M. (2014). Méthodes numériques pour la spatialisation sonore, de la simulation à

la synthèse binaurale [Numerical methods for sound spatialisation, from simulation to

binaural synthesis] (PhD Thesis). Ecole polytechnique, Palaiseau.

Burton, A. J., & Miller, G. F. (1971). The application of integral equation methods to the

numerical solution of some exterior boundary value problems. Proceedings of the Royal

Society of London, Series A, 323, 201–210.

Dutt, A.,&Rokhlin,V. (1993). Fast Fourier transforms for nonequispaced data. SIAM Journal

of Scientific Computing, 14, 1368–1393.

Greengard, L., & Rokhlin, V. (1987). A fast algorithm for particle simulations. Journal of

Computational Physics, 73, 325–348.

Greengard, L. (1988). The rapid evaluation of potential fields in particle systems. Cambridge:

MIT press.

Greengard, L., & Lee, J. Y. (2004). Accelerating the non-uniform Fast Fourier Transform.

SIAM Review, 46, 443–455.

Hackbusch, W. (1999). A sparse matrix arithmetic based onH-matrices. Part I: Introduction

to H-matrices. Computing, 62, 89–108.

Lee, J. Y., & Greengard, L. (2005). The type 3 non-uniform FFT and its applications. Journal

of Computational Physics, 206, 1–7.

Nell, C. W., & Gilroy, L. E. (2003). An improved BASIS model for the BeTSSi submarine.

DRDC Atlantic TR, 199, 1–20.

Schneider, H.G.,Berg, R.,Gilroy, L., Karasalo, I.,MacGillivray, I.,Morshuizen, M.T.,&Volker,

A. (2003). Acoustic scattering by a submarine: Results from a benchmark target strength

simulation workshop. International Congress on Sound and Vibration, 10, 2475–2482.

Simon, J. (2003). Extension des méthodes multipoles rapides: résolution pour des seconds

membres multiples et applications aux objets diélectriques, [Extension of fast multipole

methods: solving multiple right-hand-sides and applications to dielectric objects] Thèse de

l’université de Versailles Saint-Quentin-en-Yvelines (PhD thesis). Université de Versailles

Saint-Quentin-en-Yvelines, Versaille.

Soudais, P. (1994). Iterative solution of a 3D scattering problem from arbitrary shaped multidielectric

and multi-conducting bodies. IEEE Transactions on Antennas and Propagation,

, 954—959.

Matlab. (2013). Version 8.1.0 (R2013a). Natick,MA: TheMathWorks. Retrieved from http://

www.mathworks.com

Python Software Foundation. (2016). Python language reference (Version 2.7.). Retrieved

from http://www.python.org

Downloads

Published

2019-01-01

How to Cite

Alouges, F., Aussal, M., & Parolin, E. (2019). Fast Boundary Element Method for acoustics with the Sparse Cardinal Sine Decomposition. European Journal of Computational Mechanics, 26(4), 377–399. https://doi.org/10.1080/17797179.2017.1306832

Issue

Section

Original Article