A Meshfree Method For Incompressible Fluid Flows with Incorporated Surface Tension

Authors

  • Sudarshan Tiwari Fraunhofer Institut Techno- und Wirtschaftmathematik Gottlieb-Daimler-Strasse Gebäude 49 D-67663 Kaiserslautern, Germany
  • Jörg Kuhnert Fraunhofer Institut Techno- und Wirtschaftmathematik Gottlieb-Daimler-Strasse Gebäude 49 D-67663 Kaiserslautern, Germany

Keywords:

Meshfree method, incompressible Navier-Stokes equations, projection method, free surface flow, least squares (LSQ) approximation

Abstract

A meshfree particle method is used to simulate free surface flows. This is a Lagrangian method. Flows are modeled by the incompressible Navier-Stokes equations. The particle projection method is used to solve the Navier-Stokes equations. The spatial derivatives are approximated by the weighted least squares method (WLS). The pressure Poisson equation is solved by a local iterative procedure with the help of WLS. Numerical experiments are presented for two dimensional cases. In the case of breaking dam problem the numerical result is compared with the experimental result. The surface tension effects are studied in different shapes of drops and Laplace's law is verified. Finally, the collisions of two drops are simulated.

Downloads

Download data is not yet available.

References

Ash N., Poo J. Y., “Coalescence and separation in binary collisions of liquid drops”, J. Fluid

Mech., Vol. 221, 1990, pp. 183-204.

Belytschko T., Krongauz Y., Flemming M., “Organ D., Liu W.K.S., Smoothing and

accelerated computations in the element free Galerkin method”, J. Comp. Appl. Maths,.

Vol. 74, 1996, pp. 111-126.

Chorin A., “Numerical solution of the Navier-Stokes equations”, J. Math. Comput,. Vol. 22,

, pp. 745-762.

Dilts G. A., “Moving least squares particle hydrodynamics. I: consistency and stability”,

Hydrodynamics methods group report, Los Alamos National Laboratory, 1996.

Gingold R. A., Monaghan J. J., “Smoothed particle hydrodynamics: theory and application to

non-spherical stars”, Mon. Not. Roy. Astron. Soc., Vol. 181, 1977, pp. 375-389.

Ginzburg I., Wittum G., “Two-phase flows on interface refined grids modeled with VOF,

staggered finite volumes, and spline interpolants”, J. Comp. Phys.,. Vol. 166, 2001,

pp. 302-335.

Hansbo P., “The characteristic streamline diffusion method for the time dependent

incompressible Navier-Stokes equations”, Comp. Meth. Appl. Mech. Eng., Vol. 99, 1992,

pp. 171-186.

Harlow F. H., Welch J. E., “Numerical study of large amplitude free surface motions”, Phys.

Fluids, Vol.8, 1965, p. 2182.

Hirt C. W., Nichols B. D., “Volume of fluid (VOF) method for dynamic of free boundaries”,

J. Comput. Phys., Vol. 39, 1981, p. 201.

Kelecy F. J., Pletcher R. H., “The development of free surface capturing approach for multi

dimensional free surface flows in closed containers”, J. Comput. Phys., Vol. 138, 1997,

p. 939.

Kothe D. B., Mjolsness R. C., “RIPPLE: A new model for incompressible flows with free

surfaces”, AIAA Journal, Vol. 30, No 11, 1992, pp. 2694-2700.

Kuhnert J., General smoothed particle hydrodynamics, Ph.D. Thesis, Kaiserslautern

University, Germany, 1999.

Kuhnert J., “An upwind finite pointset method for compressible Euler and Navier-Stokes

equations”, preprint, ITWM, Kaiserslautern, Germany, 2000.

Kuhnert J., Tramecon A., Ullrich P., “Advanced Air Bag Fluid Structure Coupled Simulations

applied to out-of Position Cases”, EUROPAM Conference Proceedings 2000, ESI group,

Paris, France.

Landau L. D., Lifshitz E. M., Fluid Mechanics, Pergamon, New York, 1959.

Lafaurie B., Nardone C., Scardovelli R., Zaleski S., Zanetti G., “Modelling Merging and

Fragmentation in Multiphase Flows with SURFER”, J. Comput. Phys., Vol. 113, 1994,

pp. 134 - 147.

Lucy L. B., “A numerical approach to the testing of the fission hypothesis”, Astron,

J., Vol. 82, 1977, p. 1013.

Maronnier V., Picasso M., Rappaz J., “Numerical simulation of free surface flows”,

J. Comput. Phys. Vol. 155, 1999, p. 439.

Martin J. C., Moyce M. J., “An experimental study of the collapse of liquid columns on a

liquid horizontal plate”, Philos. Trans. Roy. Soc. London, Ser. A 244, 1952, p. 312.

Monaghan J. J., “Smoothed particle hydrodynamics”, Annu. Rev. Astron. Astrop, Vol. 30,

, pp. 543-574.

Monaghan J. J., “Simulating free surface flows with SPH”, J. Comput. Phys., Vol. 110, 1994,

p. 399.

Monaghan J. J., Gingold R. A., “Shock Simulation by particle method SPH”, J. Comp. Phys.,

Vol. 52, 1983, pp. 374-389.

Morris J. P., Fox P. J., Zhu Y., “Modeling Low Reynolds Number Incompressible Flows

Using SPH”, J. Comput. Phys., Vol. 136, 1997, pp. 214-226.

Tiwari S., Kuhnert J., “Grid free method for solving Poisson equation”, Berichte des

Fraunhofer ITWM, Kaiserslautern, Germany, Nr. 25, 2001.

Tiwari S., Kuhnert J., “Finite pointset method based on the projection method for simulations

of the incompressible Navier-Stokes equations”, to appear in M. Griebel, M. A.

Schweitzer (Eds.), Springer LNCSE: Meshfree Methods for Partial Differential

Equations, Springer-Verlag, 2003.

Tiwari S., Kuhnert J., Particle method for simulations of free surface flows, preprint

Fraunhofer ITWM, Kaiserslautern, Germany, 2000.

Tiwari S., “A LSQ-SPH approach for compressible viscous flows”, to appear in Proceedings

of the 8th International Conference on Hyperbolic Problems Hyp2000.

Tiwari S., Manservisi S., Modeling incompressible Navier-Stokes flows by LSQ-SPH,

Berichte des Fraunhofer ITWM, Kaiserslautern, Germany, 2000.

Downloads

Published

2002-07-26

How to Cite

Tiwari, S. ., & Kuhnert, J. . (2002). A Meshfree Method For Incompressible Fluid Flows with Incorporated Surface Tension. European Journal of Computational Mechanics, 11(7-8), 965–987. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2527

Issue

Section

Original Article