Calculs thermomécaniques pour la conception de structures réfractorisées

Authors

  • Alain Gasser Laboratoire de Mécanique des Systèmes et des Procédés, ESEM 8, rue Léonard de Vinci, F-45072 Orléans Cedex 2
  • Philippe Boisse Laboratoire de Mécanique des Systèmes et des Procédés, ESEM 8, rue Léonard de Vinci, F-45072 Orléans Cedex 2
  • Jacques Poirier CRDM/Sollac, Rue du Comte Jean F-59240 Dunkerque
  • Yves Duthe Electricité de France, DMA, Les renardières F-77818 Moret-sur-Loing Cedex

Keywords:

refractorised structures, equivalent two-layered shell element, inverse identification, thermomechanics, smeared crack model, expansion joints

Abstract

Degradations in refractorised structures can appear during using. To limit these degradations in improving the design, it is necessary to have adapted finite element computing tools. For simple structures, like steel ladles, a 3D computing can be performed. On the other hand, for more complex structures, like coal fired power plants, the use of a simplified element is essential. It is here a two-layered shell element that has an equivalent bahaviour to the set of metallic casing and refractory lining.

Downloads

Download data is not yet available.

References

Berthaud Y., Robin J. M., Schmitt N., Poirier J., Themines D., Thermomechanical behaviour

of magnesia carbon refractory ceramics, British Ceramic Transactions, vol. 97, n° 1,

, p. 1-10.

Boisse P., Gasser A., Poirier J., Rousseau J., Simulations of thermomechanical behavior of

composite refractory linings, Composites Part B: Engineering, vol. 32, n° 5, 2001, p.

-474.

Cope R. J., Rao P. V., Clark L. A., Norris P., Modelling of reinforced concrete behaviour for

finite element analyses of bridge slabs, Numerical Methods for Nonlinear Problems I,

vol. al. (Eds), p. 457-470.

Cotterell B., Mai Y. W., Fracture mechanics of cementitious materials, Blackie Academic &

Professional, 1996.

De Borst R., Nauta P., Non-Orthogonal Cracks in a Smeared Finite Element Model,

Engineering Computations, vol. 2, n° 1985, p. 35-46.

Derré V., Gasser A., Boisse P., Poche à acier de 270 tonnes à tenue améliorée, Rapport

Usinor/LMSP, Orléans (France), 2000.

Gordon E. D., Refractories in CFB applications, 12th International Conference on Fluidized

Bed Combustions, San Diego (USA), 1993, p. 967-983.

Hibbitt, Karlsson, Sorensen, Theoretical Manual of Abaqus Code, HKS Inc., 1997.

Lemaistre H., Etude des propriétés thermomécaniques de divers réfractaires, Thèse de l’INSA

de Lyon (France), 1998.

Litton R. W., A contribution to the analysis of concrete structures under cyclic loading, Thèse

de l’University of California, 1976.

Marquardt D. W., An algorithm for least squares estimation of nonlinear parameters, J. Soc.

Indus. Appl. Math., vol. 11, n° 2, 1963, p. 431-441.

Peruzzi S., Poirier J., Glandus J. C., Huger M., Numerical study of the in-serve behaviour of

refractory parts used in continuous casting, 6th European Ceramic Society Conference,

Brighton (UK), 1999, p. 161-162.

Petersson P. E., Crack growth developpement of fracture zones in plain concrete and similar

materials, Rapport de Lund Institute of Technology, 1985.

Poirier J., Recent tendencies in refractories in relation with service in the steel industry, 39th

Colloquium on Refractories, Aachen (Germany), 1996, p. 6-16.

Rashid Y. R., Ultimate strength analysis of prestressed concrete pressure vessels, Nuclear

Engineering and Design, vol. 7, n° 1968, p. 334-344.

Schnur D. S., Zabaras N., An inverse method for determining elastic material properties and a

material interface, International Journal for Numerical Methods in Engineering, vol. 33,

n° 1992, p. 2039-2057.

Weihe S., Kröplin B., de Borst R., Classification of smeared crack models based on material

and structural properties, International Journal of Solids and Structures, vol. 35, n° 12,

, p. 1289-1308.

Downloads

Published

2002-12-06

How to Cite

Gasser, A. ., Boisse, P., Poirier, J., & Duthe, Y. (2002). Calculs thermomécaniques pour la conception de structures réfractorisées. European Journal of Computational Mechanics, 11(2-4), 511–525. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2635

Issue

Section

Original Article