Calculs thermomécaniques pour la conception de structures réfractorisées
Keywords:
refractorised structures, equivalent two-layered shell element, inverse identification, thermomechanics, smeared crack model, expansion jointsAbstract
Degradations in refractorised structures can appear during using. To limit these degradations in improving the design, it is necessary to have adapted finite element computing tools. For simple structures, like steel ladles, a 3D computing can be performed. On the other hand, for more complex structures, like coal fired power plants, the use of a simplified element is essential. It is here a two-layered shell element that has an equivalent bahaviour to the set of metallic casing and refractory lining.
Downloads
References
Berthaud Y., Robin J. M., Schmitt N., Poirier J., Themines D., Thermomechanical behaviour
of magnesia carbon refractory ceramics, British Ceramic Transactions, vol. 97, n° 1,
, p. 1-10.
Boisse P., Gasser A., Poirier J., Rousseau J., Simulations of thermomechanical behavior of
composite refractory linings, Composites Part B: Engineering, vol. 32, n° 5, 2001, p.
-474.
Cope R. J., Rao P. V., Clark L. A., Norris P., Modelling of reinforced concrete behaviour for
finite element analyses of bridge slabs, Numerical Methods for Nonlinear Problems I,
vol. al. (Eds), p. 457-470.
Cotterell B., Mai Y. W., Fracture mechanics of cementitious materials, Blackie Academic &
Professional, 1996.
De Borst R., Nauta P., Non-Orthogonal Cracks in a Smeared Finite Element Model,
Engineering Computations, vol. 2, n° 1985, p. 35-46.
Derré V., Gasser A., Boisse P., Poche à acier de 270 tonnes à tenue améliorée, Rapport
Usinor/LMSP, Orléans (France), 2000.
Gordon E. D., Refractories in CFB applications, 12th International Conference on Fluidized
Bed Combustions, San Diego (USA), 1993, p. 967-983.
Hibbitt, Karlsson, Sorensen, Theoretical Manual of Abaqus Code, HKS Inc., 1997.
Lemaistre H., Etude des propriétés thermomécaniques de divers réfractaires, Thèse de l’INSA
de Lyon (France), 1998.
Litton R. W., A contribution to the analysis of concrete structures under cyclic loading, Thèse
de l’University of California, 1976.
Marquardt D. W., An algorithm for least squares estimation of nonlinear parameters, J. Soc.
Indus. Appl. Math., vol. 11, n° 2, 1963, p. 431-441.
Peruzzi S., Poirier J., Glandus J. C., Huger M., Numerical study of the in-serve behaviour of
refractory parts used in continuous casting, 6th European Ceramic Society Conference,
Brighton (UK), 1999, p. 161-162.
Petersson P. E., Crack growth developpement of fracture zones in plain concrete and similar
materials, Rapport de Lund Institute of Technology, 1985.
Poirier J., Recent tendencies in refractories in relation with service in the steel industry, 39th
Colloquium on Refractories, Aachen (Germany), 1996, p. 6-16.
Rashid Y. R., Ultimate strength analysis of prestressed concrete pressure vessels, Nuclear
Engineering and Design, vol. 7, n° 1968, p. 334-344.
Schnur D. S., Zabaras N., An inverse method for determining elastic material properties and a
material interface, International Journal for Numerical Methods in Engineering, vol. 33,
n° 1992, p. 2039-2057.
Weihe S., Kröplin B., de Borst R., Classification of smeared crack models based on material
and structural properties, International Journal of Solids and Structures, vol. 35, n° 12,
, p. 1289-1308.