A finite element algorithm for cavitation in hydrodynamic lubrication

Authors

  • Guy Bayada CNRS, UMR 5585 MAPLY & UMR 5514 LMC, INSA Bâtiment Léonard de Vinci F-69621 Villeurbanne Cedex
  • Michèle Chambat CNRS, UMR 5585 MAPLY, Université Lyon I Bâtiment Doyen Jean Braconnier F-69622 Villeurbanne Cedex

Keywords:

cavitating fluid film, hydrodynamic lubrication, Reynolds equation, numerical algorithm, finite element analysis, convergence proofs

Abstract

Issued from a mass conservation cavitation model for a slightly compressible fluid, a specific finite element discretization and a related fixed-point algorithm are introduced. Convergence of this algorithm is proved. Moreover, the behavior of the solution of the discrete problem towards the solution of the continuous problem is studied. Numerical results are given for one and two-dimensional problems.

Downloads

Download data is not yet available.

References

[ALT 80] ALT H. W., “Numerical Solution of Steady-State Porous Flow Free Boundary

Problems”, Numer. Math., vol. 36, p. 73-98, 1980.

[BAY 84] BAYADA G., CHAMBAT M., “Existence and Uniqueness for a Lubrication

Problem with non Regular Conditions on the Free Boundary”, BUMI, vol. 6, 3-B, p. 543-

, 1984.

[BAY 86] BAYADA G., CHAMBAT M., « Sur quelques modélisations de la zone de cavitation

en lubrification hydrodynamique », Journal of theoretical & Applied Mechanics, vol. 5,

n° 5, p. 703-709, 1986.

[BAY 90] BAYADA G., CHAMBAT M. & El ALAOUI TALIBI M., “Variational Formulations and

Finite Element Algorithms for Cavitation Problems”, ASME J. of Trib., vol. 112, p. 398-

, 1990.

[BAY 98] BAYADA G., CHAMBAT M. & VAZQUEZ C., “Characteristics Method for the

Formulation and Computation of a Free Boundary Cavitation Problem”, J. of Comp. And

Appl. Math., vol. 98, p 191-212, 1998.

[BON 95] BONNEAU D., GUINES D., FRENE J. & TOPLOSKI J., “EHD Analysis, including

Structural Inertia Effects and a Mass-Conserving Cavitation Model”, ASME J. of Trib.,

vol. 117, p. 540-547, 1995.

[CHA 87] CHAMBAT M., Contribution à la modélisation en lubrification hydrodynamique:

phénomènes de cavitation et études asymptotiques pour un écoulement entre des surfaces

rugueuses, Thèse d’Etat, Mathématiques, Université Lyon 1, 1987.

[CIO 00] CIOC S., KEITH T., “Application of the CE/SE Method to one-dimensional Flow in

Fluid Film Bearing”, Com. at the ASME meeting, Tolède, 2000.

[CRY 71] CRYER C., “The Method of Christopherson for Solving Free Boundary Problems

for infinite Journal Bearings”, Math. Of Comp., vol. 25, 115, p. 435-444, 1971.

[DOW 75] DOWSON D., GODET M., TAYLOR C. M., “Cavitations and related Phenomena in

Lubrication”, Mech. Eng. Publ. Ltd, Londres, 1975.

[ELR 81] ELROD H.G., “A Cavitation Algorithm “, ASME J. of Lubrication Technology, vol.

, p. 350-354, 1981.

[FLO 57] FLOBERG L., JAKOBSON J., “The Finite Journal Bearing considering Vaporization”,

Trans. Chalmers University, vol. 190, Suède, 1957.

[FRE 90] FRENE J., NICOLAS D., DEGUEURCE B., BERTHE D., GODET M., Lubrification

hydrodynamique, Eyrolles, Paris, 1990.

[LUN 69] LUNDHOLM G., “The circumferential Groove Journal Bearing Considering

Cavitation and Dynamic Stability”, Acta Polytechnica Scandinavia, ME series, n° 42,

Stockholm, 1969.

[MUR 74] MURTY K.G., “Note on a Bard-type Scheme for solving the Complementarity

Problems”, Onsearch, vol. 11, p. 123-130, 1974.

[PIE 82] PIETRA P., “An up-wind Finite Element Method for a Filtration Problem”, Numerical

Analysis, RAIRO, vol. 16, 4, p. 463-481, 1982.

[VIJ 89] VIJAYARAGHAVAN D., KEITH T.G., “Development and Evaluation of a Cavitation

Algorithm”, Tribology Trans. , vol. 32, 2, p. 225-233, 1989.

Downloads

Published

2001-10-17

How to Cite

Bayada, G. ., & Chambat, M. . (2001). A finite element algorithm for cavitation in hydrodynamic lubrication. European Journal of Computational Mechanics, 10(6-7), 653–678. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2687

Issue

Section

Original Article