3d nonlocal simulation of ductile crack growth - a numerical realization
Keywords:
3D-Fini te-Element-Simulation, Finite Strain P/asticity, Ductile Damage, Nonlocal RegularizationAbstract
ln this article we present a rea/ization of a three dimensional ductile damage analysis. The ROUSSELIER mode/ is used in a finite strain fonnulation to represent the mate rial behavior, so that a threshold value of the damage parameter (J, which corresponds to an asswned void volume fraction, can be defined as crack propagation criterion. We propose a new solution approach using a non local damage formulation in the scope of the fini te element method. This approach uses a set of constitutive equations with a BAZANT -type non local regldarization and an iterative NEWTON-RAPHSON-scheme, which requires the detennination of the global stiffness mat rix and the residuum vector of the system by the assembling of local solutions in each integration point. For the spatial discretization 20-nodes-brick elements with 2 x 2 x 2-integration are used. A numerical example shows the applicability of the new solution algorithm.
Downloads
References
[ARA 87] ARA VAS N ., <
Models >>, International Journal for Numerical Methods in Engineering, vol. 24,
, p. 1395-1416.
[BAA 97] BAAS ER H., HOHE J ., GROSS D., <
damage mode!>>, KOSINSKI W., DE BOER R., GROSS D., Eds., Problems of Environmental
and Damage Mechanics, n° ISBN 83-906354-1-0, Warszawa, Poland, 1997, p. 139-147.
[BAA 00] BAASER H., TVERGAARD V.,<< A New Algorithmic Approach treating Nonlocal
Effects at Finite Rate-independent Deformation using the ROUSSELIER Damage Mode! >>,
submitted to Computer Methods in Applied Mechanics and Engineering, , 2000, see also
DCAMM Report 647, TU Denmark, Lyngby.
[BAA 98] BAASER H., GROSS D., <
in Thin-Walled Shells >>, BERTRAM A., SIDOROFF F., Eds., Mechanics of Mate rials
with lntrinsic Length Scale, n° ISBN 2-86883-388-8, Magdeburg, Germany, 1998A, EDP
Sciences, p. 13-17, Journal de Physique IV, 8.
[BAZ 88] BAZANT Z., PIJAUDIER-CABOT G., << Nonlocal Continuum Damage, Localisation
Instability and Convergence >>, Journal of Applied Mechanics, vol. 55, 1988, p. 287-293.
[BOR 99] DE BORST R., PAMIN J., GEERS M., <
and damage theories with a view to localization analysis >>, European Journal of Mechanics
-A/Solids, vol. 18, 1999, p. 939-962.
[EHL 98] EHLERS W., DIEBELS S., VOLK W.,<< Deformation and Compatibility for Elastoplastic
Micropolar Materials with Applications to Geomechanical Problems >>, BERTRAM
A., FOREST S., SIDOROFF F., Eds., Mechanics of Materials with lntrinsic Length Scale,
Magdeburg, Germany, 1998, p. 120-127.
[HOH 96] HOHE J ., BAAS ER H., GROSS D., << Analysis of ductile crack growth by means of
a cohesive damage mode! >>, International Journal of Fracture, vol. 81, 1996, p. 99-112.
[LEB 94] LEBLOND J., PERRIN G., DEVAUX J., <
Nonlocal Damage >>, ASME Journal of Applied Mechanics, vol. 61, 1994, p. 236--242.
[LI 94] LI Z., BILBY B., HOWARD I., <
theory >>, Fatigue & Fracture of Engineering Mate rials & Structures, vol. 17, n° 9, 1994,
p. 1075-1087.
[MAT 94] MA THUR K., NEEDLEMAN A., TVERGAARD V.,<< Ductile failure analyses on massive!
y parallel computers >>, Computer Methods in Applied Mechanics and Engineering,
vol. 119,1994,p. 283-309.
[OLI 96] OLIVER J ., « Modelling strong Discontinuities in Solid Mechanics via Strain Softening
Constitutive Equations : Part 1 and II », International Journal for Numerical Methods
in Engineering, vol. 39, 1996, p. 3575-3623.
[PIJ 93] PIJAUDIER-CABOT G., BENALLAL A.,<< Strain localization and bifurcation in a nonlocal
continuum >>, International Journal of Solids and Structures, vol. 30, n° 13, 1993,
p. 1761-1775.
[REE 97] REESE S., WRIGGERS P.,<< A material mode! for rubber-like polymers exhibiting
plastic defom1ation : computational aspects and a comparison with experimental results »,
Computer Methods in Applied Mechanics and Engineering, vol. 148, 1997, p. 279-298.
[ROU 89] ROUSSELIER G., DEVAUX J.-C., MOTTET G., DEVESA G., << A Methodology
for Ductile Fracture Analysis based on Damage Mechanics : An Illustration of a Local
Approach of Fracture», Nonlinear Fracture Mechanics, vol. 2, 1989, p. 332-354.
[SIM 92] SIMO J ., << Algorithms for Static and Dynamic Multiplicative Plasticity that preserve
the classical Return Mapping Schemes of the infinitesimal Theory », Computer Methods in
Applied Mechanics and Engineering, vol. 99, 1992, p. 61-112.
[TVE 89] TVERGAARD V.,<< Material Failure by Void Growth to Coalescence», Advances in
Applied Mechanics, vol. 27, 1989, p. 83-151.
[TVE 97] TVERGAARD V., NEEDLEMAN A., << Nonlocal Effects on Localization in a VoidSheet
», International Journal of Solids and Structures, vol. 34, n° 18, 1997, p. 2221-