Fracture features of anisotropic materials at different impact velocities
DOI:
https://doi.org/10.1080/17797179.2017.1393733Keywords:
3D simulation, finite element method, low-anisotropy aluminium alloy, impact loading, elastic, plastic, and strength anisotropyAbstract
The paper provides a 3D finite element simulation to investigate the fracture of low-anisotropy aluminium alloy 2024 loaded by a steel impactor at a velocity of 200 and 600 m/s. For aluminium alloy 2024 a failure criterion in terms of ultimate plastic strains is used taking into account the elastic, plastic, and strength anisotropy of the target material. The simulation results, presented as cross-sectional fracture distributions, demonstrate that increasing the impact velocity results in additional fracture zones in anisotropic materials whose elastic, plastic, and strength properties are lowest in the in-plane direction compared to isotropic materials.
Downloads
References
Barlat, F., Brem, J. C., Yoon, J. W., Chung, K., Dick, R. E., Lege, D. J., … Chu, E. (2003). Plane
stress yield function for aluminum alloy sheets – part 1: Theory. International Journal of
Plasticity, 19, 1297–1319.
Barlat, F., Lege, D. J., & Brem, J. C. (1991). A six-component yield function for anisotropic
materials. International Journal of Plasticity, 7, 693–712.
Barlat, F., & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A
yield function for orthotropic sheets under plane stress conditions. International Journal
of Plasticity, 5, 51–66.
Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J. C., Hayashida, Y., … Makosey, S.
(1997). Yield function development for aluminum alloy sheets. Journal of the Mechanics
and Physics of Solids, 45, 1727–1763.
Beese, A. M., Luo, M., Li, Y., Bai, Y., & Wierzbicki, T. (2010). Partially coupled anisotropic
fracture model for aluminum sheets. Engineering Fracture Mechanics, 77, 1128–1152.
Brian, N. L. (2005). Effects of geometrical anisotropy on failure in a plastically anisotropic
metal. Engineering Fracture Mechanics, 72, 2792–2807.
Cardoso, R. P. R., & Yoon, J. W. (2009). Stress integration method for a nonlinear kinematic/
isotropic hardening model and its characterization based on polycrystal plasticity.
International Journal of Plasticity, 25, 1684–1710.
Geng, L., & Shen, Y. (2002). Anisotropic hardening equations derived from reverse-bend
testing. International Journal of Plasticity, 18, 743–767.
Herrmann, W. (1969). Constitutive equation for the dynamic compaction of ductile porous
materials. Journal of Applied Physics, 40(6), 2490–2499.
Johnson, G. R. (1977, March). High velocity impact calculations in three dimension. Journal
of Applied Mechanics, 95–100
Johnson, G. R. (1977). High velocity impact calculation in three dimensions. Journal of Applied
Mechanics, 44 (1), 95–100.
Khan, A. S., & Liu, H. (2012). Strain rate and temperature dependent fracture criteria for
isotropic and anisotropic metals. International Journal of Plasticity, 37, 1–15.
Kosarchuk, V. V., Kovalchuk, B. I., & Lebedev, A. A. (1986). Theory of plastic flow in anisotropic
media. Report 1. Determining relationships. Problem Prochnosti, 4, 50–56.
Krivosheina, M. N., Kobenko, S. V., Kozlova, M. A. (2009). Numerical analysis of the effect of
isotropic and kinematic hardening of anisotropic targets in impact loading //7th International
Conference on Modern Practice in Stress and Vibration Analysis IOP Publishing / Journal
of Physics: Conference Series 181 012083 doi:10.1088/1742-6596/181/1/012083 Режим
доступа: http://iopscience.iop.org/1742-6596/181/1/012083
Lee, J.-W., Lee, M.-G., & Barlat, F. (2012). Finite element modeling using homogeneous
anisotropic hardening and application to spring-back prediction. International Journal of
Plasticity, 29, 13–41.
Miklyaev, P. G., & Fridman, L. B. (1986). Anisotropy of mechanical properties of materials.
Moscow: Metallurgia.
Olmo, N., & Kachi, Y. (1986, June). A constitutive model of cyclic plasticity for nonlinear
hardening materials. Journal of Applied Mechanics, 53, 395–403.
Radchenko, A. V., Kobenko, S. V., & Krivosheina, M. N. (2004). Numerical simulation of
impact loading of solid propellant within an orthotropic shell. Space Debris, Kluwer Academic
Publishers, 2(4), 319–330.
Radchenko, A., Radchenko, P., Tuch, E., Krivosheina, M., & Kobenko, S. (2012). Comparison
of application of various strength criteria on modeling of behavior of composite materials
at impact. Journal of Materials Science and Engineering A, 1, 112–120. (ISSN:2161-6213)
(formerly parts of Journal of Materials Science and Engineering ISSN 1934-8959, USA).
Rousselier, G., Barlat, F., & Yoon, J. W. (2009). A novel approach for anisotropic hardening
modeling. Part I: Theory and its application to finite element analysis of deep drawing.
International Journal of Plasticity, 25, 2383–2409.
Sedov, L. I. (1976). Continuum mechanics. Moscow: Nauka.
Steglich, D., & Brocks, W. (1997). Micromechanical modeling of the behavior of ductile
materials including particles. Computational Materials Science, 9, 7–17.
Steglich, D., Brocks, W., Heerens, J., & Pardoen, T. (2008). Anisotropic ductile fracture of Al
alloys Eng. Engineering Fracture Mechanics, 75, 3692–3706
Stoughton, T. B., & Yoon, J. W. (2009). Anisotropic hardening and non-associated flow in
proportional loading of sheet metals. International Journal of Plasticity, 25, 1777–1817.
Tsai, S. W., & Wu, E. M. (1971). Journal of Composite Materials, 5, 58–80.
Vignjevic, R., Djordjevic, N., Campbell, J., & Panov, V. (2012). Modelling of dynamic damage
and failure in aluminum alloys. International Journal of Impact Engineering, 49, 61–76.
ZAMM. (1933). Bd. 13, H. 5, S. 360-363.