Fracture features of anisotropic materials at different impact velocities

Authors

  • M. N. Krivosheina Laboratory of Physics of Nonlinear Media, Institute of Strength Physics and Materials Science of SB RAS , Tomsk State University, Tomsk, Russia
  • S. V. Kobenko Faculty of Information Technology and Mathematics, Nizhnevartovsk State University, Nizhnevartovsk, Russia
  • E. V. Tuch Laboratory of Physics of Nonlinear Media, Institute of Strength Physics and Materials Science of SB RAS , Tomsk State University, Tomsk, Russia http://orcid.org/0000-0002-4583-3933
  • O. A. Kashin Laboratory of Shape Memory Alloys, Institute of Strength Physics and Materials Science of SB RAS , Tomsk State University, Tomsk, Russia
  • A. I. Lotkov Laboratory of Shape Memory Alloys, Institute of Strength Physics and Materials Science of SB RAS , Tomsk State University, Tomsk, Russia
  • Yu. A Khon Laboratory of Physics of Nonlinear Media, Institute of Strength Physics and Materials Science of SB RAS , Tomsk State University, Tomsk, Russia

DOI:

https://doi.org/10.1080/17797179.2017.1393733

Keywords:

3D simulation, finite element method, low-anisotropy aluminium alloy, impact loading, elastic, plastic, and strength anisotropy

Abstract

The paper provides a 3D finite element simulation to investigate the fracture of low-anisotropy aluminium alloy 2024 loaded by a steel impactor at a velocity of 200 and 600 m/s. For aluminium alloy 2024 a failure criterion in terms of ultimate plastic strains is used taking into account the elastic, plastic, and strength anisotropy of the target material. The simulation results, presented as cross-sectional fracture distributions, demonstrate that increasing the impact velocity results in additional fracture zones in anisotropic materials whose elastic, plastic, and strength properties are lowest in the in-plane direction compared to isotropic materials.

Downloads

Download data is not yet available.

References

Barlat, F., Brem, J. C., Yoon, J. W., Chung, K., Dick, R. E., Lege, D. J., … Chu, E. (2003). Plane

stress yield function for aluminum alloy sheets – part 1: Theory. International Journal of

Plasticity, 19, 1297–1319.

Barlat, F., Lege, D. J., & Brem, J. C. (1991). A six-component yield function for anisotropic

materials. International Journal of Plasticity, 7, 693–712.

Barlat, F., & Lian, K. (1989). Plastic behavior and stretchability of sheet metals. Part I: A

yield function for orthotropic sheets under plane stress conditions. International Journal

of Plasticity, 5, 51–66.

Barlat, F., Maeda, Y., Chung, K., Yanagawa, M., Brem, J. C., Hayashida, Y., … Makosey, S.

(1997). Yield function development for aluminum alloy sheets. Journal of the Mechanics

and Physics of Solids, 45, 1727–1763.

Beese, A. M., Luo, M., Li, Y., Bai, Y., & Wierzbicki, T. (2010). Partially coupled anisotropic

fracture model for aluminum sheets. Engineering Fracture Mechanics, 77, 1128–1152.

Brian, N. L. (2005). Effects of geometrical anisotropy on failure in a plastically anisotropic

metal. Engineering Fracture Mechanics, 72, 2792–2807.

Cardoso, R. P. R., & Yoon, J. W. (2009). Stress integration method for a nonlinear kinematic/

isotropic hardening model and its characterization based on polycrystal plasticity.

International Journal of Plasticity, 25, 1684–1710.

Geng, L., & Shen, Y. (2002). Anisotropic hardening equations derived from reverse-bend

testing. International Journal of Plasticity, 18, 743–767.

Herrmann, W. (1969). Constitutive equation for the dynamic compaction of ductile porous

materials. Journal of Applied Physics, 40(6), 2490–2499.

Johnson, G. R. (1977, March). High velocity impact calculations in three dimension. Journal

of Applied Mechanics, 95–100

Johnson, G. R. (1977). High velocity impact calculation in three dimensions. Journal of Applied

Mechanics, 44 (1), 95–100.

Khan, A. S., & Liu, H. (2012). Strain rate and temperature dependent fracture criteria for

isotropic and anisotropic metals. International Journal of Plasticity, 37, 1–15.

Kosarchuk, V. V., Kovalchuk, B. I., & Lebedev, A. A. (1986). Theory of plastic flow in anisotropic

media. Report 1. Determining relationships. Problem Prochnosti, 4, 50–56.

Krivosheina, M. N., Kobenko, S. V., Kozlova, M. A. (2009). Numerical analysis of the effect of

isotropic and kinematic hardening of anisotropic targets in impact loading //7th International

Conference on Modern Practice in Stress and Vibration Analysis IOP Publishing / Journal

of Physics: Conference Series 181 012083 doi:10.1088/1742-6596/181/1/012083 Режим

доступа: http://iopscience.iop.org/1742-6596/181/1/012083

Lee, J.-W., Lee, M.-G., & Barlat, F. (2012). Finite element modeling using homogeneous

anisotropic hardening and application to spring-back prediction. International Journal of

Plasticity, 29, 13–41.

Miklyaev, P. G., & Fridman, L. B. (1986). Anisotropy of mechanical properties of materials.

Moscow: Metallurgia.

Olmo, N., & Kachi, Y. (1986, June). A constitutive model of cyclic plasticity for nonlinear

hardening materials. Journal of Applied Mechanics, 53, 395–403.

Radchenko, A. V., Kobenko, S. V., & Krivosheina, M. N. (2004). Numerical simulation of

impact loading of solid propellant within an orthotropic shell. Space Debris, Kluwer Academic

Publishers, 2(4), 319–330.

Radchenko, A., Radchenko, P., Tuch, E., Krivosheina, M., & Kobenko, S. (2012). Comparison

of application of various strength criteria on modeling of behavior of composite materials

at impact. Journal of Materials Science and Engineering A, 1, 112–120. (ISSN:2161-6213)

(formerly parts of Journal of Materials Science and Engineering ISSN 1934-8959, USA).

Rousselier, G., Barlat, F., & Yoon, J. W. (2009). A novel approach for anisotropic hardening

modeling. Part I: Theory and its application to finite element analysis of deep drawing.

International Journal of Plasticity, 25, 2383–2409.

Sedov, L. I. (1976). Continuum mechanics. Moscow: Nauka.

Steglich, D., & Brocks, W. (1997). Micromechanical modeling of the behavior of ductile

materials including particles. Computational Materials Science, 9, 7–17.

Steglich, D., Brocks, W., Heerens, J., & Pardoen, T. (2008). Anisotropic ductile fracture of Al

alloys Eng. Engineering Fracture Mechanics, 75, 3692–3706

Stoughton, T. B., & Yoon, J. W. (2009). Anisotropic hardening and non-associated flow in

proportional loading of sheet metals. International Journal of Plasticity, 25, 1777–1817.

Tsai, S. W., & Wu, E. M. (1971). Journal of Composite Materials, 5, 58–80.

Vignjevic, R., Djordjevic, N., Campbell, J., & Panov, V. (2012). Modelling of dynamic damage

and failure in aluminum alloys. International Journal of Impact Engineering, 49, 61–76.

ZAMM. (1933). Bd. 13, H. 5, S. 360-363.

Downloads

Published

2019-01-13

How to Cite

Krivosheina, M. N., Kobenko, S. V., Tuch, E. V., Kashin, O. A., Lotkov, A. I., & Khon, Y. A. (2019). Fracture features of anisotropic materials at different impact velocities. European Journal of Computational Mechanics, 26(5-6), 609–621. https://doi.org/10.1080/17797179.2017.1393733

Issue

Section

Original Article