A tensorial-basedmesh adaptation for a poisson problem
DOI:
https://doi.org/10.1080/17797179.2017.1310648Keywords:
Poisson problem, goal-oriented mesh adaptation, anisotropic mesh adaptation, adjoint, metricAbstract
This paper discusses anisotropic mesh adaptation, addressing either a local interpolation error, or the error on a functional, or the norm of the approximation error, the two last options using an adjoint state. This is explained with a Poisson model problem. We focus on metric-based mesh adaptation using a priori errors. Continuous metric-based methods were developed for this purpose. They propose a continuous statement of the mesh optimisation problem, which need to be then discretised and solved numerically. Tensorial metric-based methods produce directly a discrete optimal metric for interpolation error equirepartition. The novelty of the present paper is to extend the tensorial discrete method to addressing (1) L1 errors and (2) adjoint-based analyses, two functionalities already available with continuous metric. A first interest is to be able to compare tensorial and continuous methods when they are applied to the reduction of approximation errors. Second, an interesting feature of the new formulation is a potentially sharper analysis of the approximation error. Indeed, the resulting optimal metric has a different anisotropic component. The novel formulation is then compared with the continuous formulation for a few test cases involving high-gradient layers and gradient discontinuities.
Downloads
References
Absil, P.-A., Mahony,R.,&Sepulchre,R. (2008). Optimization algorithms on matrix manifolds.
Princeton, NJ: Princeton University Press.
Agouzal, A., Lipnikov, K., & Vasilevskii, Y. (1999). Adaptive generation of quasi-optimal
tetrahedral meshes. East-West Journal, 7, 223–244.
Alauzet, F. (2003). Adaptation de maillage anisotrope en trois dimensions. Application
aux simulations instationnaires en Mécanique des Fluides [Tridimensional anisotropic
mesh adaptation. Application to unsteady simulations in Fluid Mechanics] (PhD thesis).
Université Montpellier II, Montpellier, France.
Alauzet, F., & Loseille, A. (2010). High order sonic boom modeling by adaptive methods. The
Journal of Computational Physics, 229, 561–593.
Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006). Log-Euclidean metrics for fast and
simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56, 411–421.
Artina, M., Fornasier, M., Micheletti, S., & Perotto, S. (2013). Benefits of anisotropic mesh
adaptation for brittle fractures under plane-strain conditions. In L. Formaggia & S. Perotto
(Eds.), Proceedings of tetrahedron IV in new challenges in grid generation and adaptivity
for scientific computing (Vol. 5, pp. 43–67). Verbania, IT: Springer. Series: SEMA SIMAI
Springer.
Aubin, J. P. (1967). Behaviour of the error of the approximate solution of boundary value
problems for linear elliptic operators by galerkin’s and finite difference methods. TheAnnali
della Scuola Normale Superiore di Pisa, 21, 599–637.
Becker, R., & Rannacher, R. (1996). A feed-back approach to error control in finite element
methods: Basic analysis and examples. East-West Journal of Numerical Mathematics, 4,
–264.
Belme, A. (2011). Aérodynamique instationnaire et méthode adjointe [Unsteady
Aerodynamics and adjoint method] (PhD thesis). Université de Nice Sophia Antipolis,
Sophia Antipolis, France. (in French).
Belme, A., Dervieux, A., & Alauzet, F. (2012). Time accurate anisotropic goal-oriented mesh
adaptation for unsteady flows. The Journal of Computational Physics, 231, 6323–6348.
Berger, M. (2003). A panoramic view of Riemannian geometry. Berlin: Springer Verlag.
Billon, L., Mesri, Y., & Hachem, E. (2016). Anisotropic boundary layer mesh generation for
immersed complex geometries. Engineering with Computers, 33, 249–260.
Brèthe, G., & Dervieux, A. (2016). Anisotropic norm-oriented mesh adaptation for a Poisson
problem. The Journal of Computational Physics, 322, 804–826.
Brèthes, G. (2015). Algorithmes multigrilles adaptatifs et scalables [Adaptive and scalable
multigrid algorithms] (PhD thesis). Université de Nice.
Castro-Díaz, M. J., Hecht, F., Mohammadi, B., & Pironneau, O. (1997). Anisotropic
unstructured mesh adaptation for flow simulations. The International Journal for Numerical
Methods in Fluids, 25, 475–491.
Chen, L., Sun, P., & Xu, J. (2007). Optimal anisotropic meshes for minimizing interpolation
errors in Lp-norm. Mathematics of Computation, 76, 179–204.
Coupez, T. (2011). Metric construction by length distribution tensor and edge based error for
anisotropic adaptive meshing. The Journal of Computational Physics, 230, 2391–2405.
Coupez, T., Jannoun, G., Nassif, N., Nguyen, H. C., Digonnet, H., & Hachem, E. (2013).
Adaptive time-step with anisotropic meshing for incompressible flows. The Journal of
Computational Physics, 241, 195–211.
Dompierre, J., Vallet, M. G., Fortin, M., Bourgault, Y., & Habashi, W. G. (1997, January).
Anisotropic mesh adaptation: Towards a solver and user independent CFD. In AIAA 35th
Aerospace Sciences Meeting and Exhibit, Reno, NV: AIAA-1997-0861.
Formaggia, L., Micheletti, S., & Perotto, S. (2004). Anisotropic mesh adaptation in
computational fluid dynamics: Application to the advection-diffusion-reaction and the
Stokes problems. Applied Numerical Mathematics, 51, 511–533.
Formaggia, L., & Perotto, S. (2003). Anisotropic a priori error estimates for elliptic problems.
Numerical Mathematics, 94, 67–92.
Gruau, C.,&Coupez, T. (2005).3Dtetrahedral, unstructured and anisotropic mesh generation
with adaptation to natural and multidomain metric. Computer Methods in Applied
Mechanics and Engineering, 194, 4951–4976.
Guégan, D., Allain, O., Dervieux, A., & Alauzet, F. (2010). An L∞-Lp mesh adaptive method
for computing unsteady bi-fluid flows. The International Journal for NumericalMethods in
Engineering, 84, 1376–1406.
Huang, W. (2005). Metric tensors for anisotropic mesh generation. The Journal of Computational
Physics, 204, 633–665.
Jensen, K. E. (2016). Anisotropic mesh adaptation and topology optimization in three
dimensions. Journal of Mechanical Design, 138, 061401.
Loseille, A., & Alauzet, F. (2011a). Continuous mesh framework. Part I: Well-posed
continuous interpolation error. SIAM Journal on Numerical Analysis, 49, 38–60.
Loseille, A., & Alauzet, F. (2011b). Continuous mesh framework. Part II: Validations and
applications. SIAM Journal on Numerical Analysis, 49, 61–86.
Loseille, A., Dervieux, A., & Alauzet, F. (2010, January). A 3D goal-oriented anisotropic
mesh adaptation applied to inviscid flows in aeronautics. In 48th AIAA Aerospace Sciences
Meeting and Exhibit, Orlando, FL: AIAA-2010-1067.
Loseille, A., Dervieux, A., & Alauzet, F. (2015, January). Anisotropic norm-oriented mesh
adaptation for compressible flows. In 53rd AIAA Aerospace Sciences Meeting, Florida:
Kissimmee.
Loseille, A., Dervieux, A., Frey, P. J.,&Alauzet, F. (2007, June). Achievement of global secondordermesh
convergence for discontinuous flows with adapted unstructuredmeshes. In 37th
AIAA Fluid Dynamics Conference and Exhibit, Miami, FL: AIAA-2007-4186.
Nitsche, J. (1968). Ein kriterium für die quasi-optimalitat des ritzschen verfohrens [A criterion
for the quasi-optimality of the Ritz procedure]. Numerical Mathematics, 11, 346–348.
Vasilevski, Y. V., & Lipnikov, K. N. (1999). An adaptive algorithm for quasi-optimal mesh
generation. Computational Mathematics and Mathematical Physics, 39, 1468–1486.
Vasilevski, Y. V., & Lipnikov, K. N. (2005). Error bounds for controllable adaptive algorithms
based on a Hessian recovery. Computational Mathematics and Mathematical Physics, 45,
–1384.
Venditti, D. A., & Darmofal, D. L. (2003). Anisotropic grid adaptation for functional outputs:
Application to two-dimensional viscous flows. The Journal of Computational Physics, 187,
–46.
Verfürth, R. (2013).Aposteriori error estimation techniques for finite element methods.Oxford:
Oxford University Press.
Yano, M., & Darmofal, D. (2012). An optimization framework for anisotropic simplex mesh
adaptation. The Journal of Computational Physics, 231, 7626–7649.
Zienkiewicz , O. C.,&Zhu, J. Z. (1992). The superconvergent patch recovery and a posteriori
error estimates. Part 1. The recovery technique. The International Journal for Numerical
Methods in Engineering, 33, 1331–1364.