A tensorial-basedmesh adaptation for a poisson problem

Authors

  • G. Brèthes INRIA, Ecuador, Universite Cote d’Azur, Sophia-Antipolis, France
  • A. Dervieux INRIA, Ecuador, Universite Cote d’Azur, Sophia-Antipolis, France

DOI:

https://doi.org/10.1080/17797179.2017.1310648

Keywords:

Poisson problem, goal-oriented mesh adaptation, anisotropic mesh adaptation, adjoint, metric

Abstract

This paper discusses anisotropic mesh adaptation, addressing either a local interpolation error, or the error on a functional, or the norm of the approximation error, the two last options using an adjoint state. This is explained with a Poisson model problem. We focus on metric-based mesh adaptation using a priori errors. Continuous metric-based methods were developed for this purpose. They propose a continuous statement of the mesh optimisation problem, which need to be then discretised and solved numerically. Tensorial metric-based methods produce directly a discrete optimal metric for interpolation error equirepartition. The novelty of the present paper is to extend the tensorial discrete method to addressing (1) L1 errors and (2) adjoint-based analyses, two functionalities already available with continuous metric. A first interest is to be able to compare tensorial and continuous methods when they are applied to the reduction of approximation errors. Second, an interesting feature of the new formulation is a potentially sharper analysis of the approximation error. Indeed, the resulting optimal metric has a different anisotropic component. The novel formulation is then compared with the continuous formulation for a few test cases involving high-gradient layers and gradient discontinuities.

Downloads

Download data is not yet available.

References

Absil, P.-A., Mahony,R.,&Sepulchre,R. (2008). Optimization algorithms on matrix manifolds.

Princeton, NJ: Princeton University Press.

Agouzal, A., Lipnikov, K., & Vasilevskii, Y. (1999). Adaptive generation of quasi-optimal

tetrahedral meshes. East-West Journal, 7, 223–244.

Alauzet, F. (2003). Adaptation de maillage anisotrope en trois dimensions. Application

aux simulations instationnaires en Mécanique des Fluides [Tridimensional anisotropic

mesh adaptation. Application to unsteady simulations in Fluid Mechanics] (PhD thesis).

Université Montpellier II, Montpellier, France.

Alauzet, F., & Loseille, A. (2010). High order sonic boom modeling by adaptive methods. The

Journal of Computational Physics, 229, 561–593.

Arsigny, V., Fillard, P., Pennec, X., & Ayache, N. (2006). Log-Euclidean metrics for fast and

simple calculus on diffusion tensors. Magnetic Resonance in Medicine, 56, 411–421.

Artina, M., Fornasier, M., Micheletti, S., & Perotto, S. (2013). Benefits of anisotropic mesh

adaptation for brittle fractures under plane-strain conditions. In L. Formaggia & S. Perotto

(Eds.), Proceedings of tetrahedron IV in new challenges in grid generation and adaptivity

for scientific computing (Vol. 5, pp. 43–67). Verbania, IT: Springer. Series: SEMA SIMAI

Springer.

Aubin, J. P. (1967). Behaviour of the error of the approximate solution of boundary value

problems for linear elliptic operators by galerkin’s and finite difference methods. TheAnnali

della Scuola Normale Superiore di Pisa, 21, 599–637.

Becker, R., & Rannacher, R. (1996). A feed-back approach to error control in finite element

methods: Basic analysis and examples. East-West Journal of Numerical Mathematics, 4,

–264.

Belme, A. (2011). Aérodynamique instationnaire et méthode adjointe [Unsteady

Aerodynamics and adjoint method] (PhD thesis). Université de Nice Sophia Antipolis,

Sophia Antipolis, France. (in French).

Belme, A., Dervieux, A., & Alauzet, F. (2012). Time accurate anisotropic goal-oriented mesh

adaptation for unsteady flows. The Journal of Computational Physics, 231, 6323–6348.

Berger, M. (2003). A panoramic view of Riemannian geometry. Berlin: Springer Verlag.

Billon, L., Mesri, Y., & Hachem, E. (2016). Anisotropic boundary layer mesh generation for

immersed complex geometries. Engineering with Computers, 33, 249–260.

Brèthe, G., & Dervieux, A. (2016). Anisotropic norm-oriented mesh adaptation for a Poisson

problem. The Journal of Computational Physics, 322, 804–826.

Brèthes, G. (2015). Algorithmes multigrilles adaptatifs et scalables [Adaptive and scalable

multigrid algorithms] (PhD thesis). Université de Nice.

Castro-Díaz, M. J., Hecht, F., Mohammadi, B., & Pironneau, O. (1997). Anisotropic

unstructured mesh adaptation for flow simulations. The International Journal for Numerical

Methods in Fluids, 25, 475–491.

Chen, L., Sun, P., & Xu, J. (2007). Optimal anisotropic meshes for minimizing interpolation

errors in Lp-norm. Mathematics of Computation, 76, 179–204.

Coupez, T. (2011). Metric construction by length distribution tensor and edge based error for

anisotropic adaptive meshing. The Journal of Computational Physics, 230, 2391–2405.

Coupez, T., Jannoun, G., Nassif, N., Nguyen, H. C., Digonnet, H., & Hachem, E. (2013).

Adaptive time-step with anisotropic meshing for incompressible flows. The Journal of

Computational Physics, 241, 195–211.

Dompierre, J., Vallet, M. G., Fortin, M., Bourgault, Y., & Habashi, W. G. (1997, January).

Anisotropic mesh adaptation: Towards a solver and user independent CFD. In AIAA 35th

Aerospace Sciences Meeting and Exhibit, Reno, NV: AIAA-1997-0861.

Formaggia, L., Micheletti, S., & Perotto, S. (2004). Anisotropic mesh adaptation in

computational fluid dynamics: Application to the advection-diffusion-reaction and the

Stokes problems. Applied Numerical Mathematics, 51, 511–533.

Formaggia, L., & Perotto, S. (2003). Anisotropic a priori error estimates for elliptic problems.

Numerical Mathematics, 94, 67–92.

Gruau, C.,&Coupez, T. (2005).3Dtetrahedral, unstructured and anisotropic mesh generation

with adaptation to natural and multidomain metric. Computer Methods in Applied

Mechanics and Engineering, 194, 4951–4976.

Guégan, D., Allain, O., Dervieux, A., & Alauzet, F. (2010). An L∞-Lp mesh adaptive method

for computing unsteady bi-fluid flows. The International Journal for NumericalMethods in

Engineering, 84, 1376–1406.

Huang, W. (2005). Metric tensors for anisotropic mesh generation. The Journal of Computational

Physics, 204, 633–665.

Jensen, K. E. (2016). Anisotropic mesh adaptation and topology optimization in three

dimensions. Journal of Mechanical Design, 138, 061401.

Loseille, A., & Alauzet, F. (2011a). Continuous mesh framework. Part I: Well-posed

continuous interpolation error. SIAM Journal on Numerical Analysis, 49, 38–60.

Loseille, A., & Alauzet, F. (2011b). Continuous mesh framework. Part II: Validations and

applications. SIAM Journal on Numerical Analysis, 49, 61–86.

Loseille, A., Dervieux, A., & Alauzet, F. (2010, January). A 3D goal-oriented anisotropic

mesh adaptation applied to inviscid flows in aeronautics. In 48th AIAA Aerospace Sciences

Meeting and Exhibit, Orlando, FL: AIAA-2010-1067.

Loseille, A., Dervieux, A., & Alauzet, F. (2015, January). Anisotropic norm-oriented mesh

adaptation for compressible flows. In 53rd AIAA Aerospace Sciences Meeting, Florida:

Kissimmee.

Loseille, A., Dervieux, A., Frey, P. J.,&Alauzet, F. (2007, June). Achievement of global secondordermesh

convergence for discontinuous flows with adapted unstructuredmeshes. In 37th

AIAA Fluid Dynamics Conference and Exhibit, Miami, FL: AIAA-2007-4186.

Nitsche, J. (1968). Ein kriterium für die quasi-optimalitat des ritzschen verfohrens [A criterion

for the quasi-optimality of the Ritz procedure]. Numerical Mathematics, 11, 346–348.

Vasilevski, Y. V., & Lipnikov, K. N. (1999). An adaptive algorithm for quasi-optimal mesh

generation. Computational Mathematics and Mathematical Physics, 39, 1468–1486.

Vasilevski, Y. V., & Lipnikov, K. N. (2005). Error bounds for controllable adaptive algorithms

based on a Hessian recovery. Computational Mathematics and Mathematical Physics, 45,

–1384.

Venditti, D. A., & Darmofal, D. L. (2003). Anisotropic grid adaptation for functional outputs:

Application to two-dimensional viscous flows. The Journal of Computational Physics, 187,

–46.

Verfürth, R. (2013).Aposteriori error estimation techniques for finite element methods.Oxford:

Oxford University Press.

Yano, M., & Darmofal, D. (2012). An optimization framework for anisotropic simplex mesh

adaptation. The Journal of Computational Physics, 231, 7626–7649.

Zienkiewicz , O. C.,&Zhu, J. Z. (1992). The superconvergent patch recovery and a posteriori

error estimates. Part 1. The recovery technique. The International Journal for Numerical

Methods in Engineering, 33, 1331–1364.

Downloads

Published

2019-01-13

How to Cite

Brèthes, G., & Dervieux, A. (2019). A tensorial-basedmesh adaptation for a poisson problem. European Journal of Computational Mechanics, 26(3), 245–281. https://doi.org/10.1080/17797179.2017.1310648

Issue

Section

Original Article