Simulation numerique par nne methode d' elements finis optimale des equations de N avier-Stokes en formulation

Authors

  • Fatteh Allah Ghadi Equipe d'Analyse Numerique et Calcu/ Scientifique Departement de Mathematiques, Faculte des Sciences, Universite lnb Zohr, Agadir, Maroc
  • Vitoriano Ruas Universite de Saint-Etienne, Faculte des Sciences et Techniques & Laboratoire de modelisation en mecanique UPMC, URA 229. 4e etage, F. 75252, Paris
  • Mohamed Wakrim Equipe d'Analyse Numerique et Calcu/ Scientifique Departement de Mathematiques, Faculte des Sciences, Universite lnb Zohr, Agadir, Maroc

Keywords:

Driven cavity, finite element, Navier-Stokes equations, stream -function, vorticity, mixed approach, backstep problem

Abstract

This paper present numerical results for the Navier-Stokes problem in terms of the stream-function and the vorticicty, obtained by our mixte approach [GHA 95] based on the decomposition of the vorticity function, in the case k = l,for the problem of the driven cavity and the backstep problem. In order to prove the performance of this method a comparision with the existing results is done.

Downloads

Download data is not yet available.

References

[ACH 92] ACHDOU Y., GLOWINSKI R., PIRONNEAU 0., « Tuning the mesh of

mixed method for the Stream function Vorticity formulation of the NavierStokes

equations», Numer. Math, 63, 145-163, 1992.

[BER 92] BERNARDI C., GIRAULT V., MADAY Y., « Mixed Spectral element

approximation of the Navier-Stokes equations in the Stream-function and

Vorticity formulation», IMA. J Numer. Ana. 12, 565-608, 1992.

[BRE 80] BREZZI F., RAPPAZ J., RAVIART P. A.,« finite Dimensional Approximation

of Nonlinear problems», Numer. Math. 36, 1-25, 1980.

[BRE 91] BREZZI F., FORTIN M., Mixed and hybrid finite element methods,

Springer-Verlag. 1991.

[BRE 76] BREZZI F., RAVAIRT P. A.,« Mixed finite Element Methods for 4th Order

Elliptic Equations», Topics in Numerical Analysis Ill (J.J.H. Miller ed.) p. 33-56,

London, Academic Press, 1976.

[BUF 91] BUFF AT M., Etude de Ia simulation numerique par une methode

d'elements finis des ecoulements internes subsonique instationnaires bi et tridimensionnels,

These de Doctorat es Sciences, Lyon, France, 1991.

[BUR 66] BURGGRAF 0. R., «Analytical and Numerical studies of the structure of

steady separated flows», J Fluid Mech Vol. 24, p. 113-152, 1966.

[CIA 78] CIARLET P. G., The finite element method for Elliptic problems

North-Holland publishing company. Amsterdam, New-York, Oxford, 1978/79.

[DHA 81] DHATT G., TOUZOT G., Une presentation de Ia methode des elements

finis, Les presses de I'Universite Laval Quebec Maloine S. A. editeur Paris, 1981.

[GHA 94] GHADI F., Resolution par Ia methode des elements finis des equations

de Navier-Stokes en formulation {7/J -w), These de I'Universite de Saint-Etienne,

France, 1994.

[GHA 95] GHADI F., RUAS V., WAKRIM M., «A mixed finite method to solve the

Stokes problem in {7/J - w) formulation », Hiroshima Mathematical Journal

Vol. 28, N°3, November, 1998.

[GLO 73] GLOWINSKI R., « Approximations extemes, par elements finis de

lagrange d'ordre un et deux du probleme de Dirichlet pour l'operateur biharmonique.

Methode iterative de resolution des problemes approches», topics in

Numerical Analysis (J .J .H. Miller, editor), 123-171, Academic Press, London,

[GLO 79) GLOWINSKI R., PIRONNEAU 0., « Numerical methods for the first

bihannonic equation and for the two dimensional Stokes problem », SIAM

Review 121, 167-212, 1979.

[GHI 89] GHIA K. N., OSSWALD G. A., GHIA U., « Analysis of incompressible

massively separeted viscous flows using unsteady Navier-Stokes equations »,

Int. J for Numer. Methods in Fluids, Vol. 9, I 025-1050, 1989.

[GIR 86] GIRAULT V., RAVIART P. A.,finite Element Method for Navier-Stokes

equations, Springer, Berlin Heidelberg New-York, 1986.

[HUG 93) HUGHES T. J. R., HAUKE G., JANSEN K., JOHAN Z., « Current

reflections on stabilized finite element methods for computational fluid

mechanics », Proceedings of the VIII international confrerence on

finite elements in fluids, 20-23, September 1993, p. 44-63, Barcelona,

CIMNE (Pineridge Press).

[KIM 85] KIM J., MOIN P., «Application of fractional-step method to incompressible

Navier-Stokes Equations», J Comput. Phys, 59, 308-323, 1985.

[MER 74] MERCIER B.,« Numerical solution of the bihannonic problem by mixed

finite elements of class C0», Boll. UMI. 10, (4), 133-149, 1974.

[MIY 73] Ml YOSHI T., « A finite element method for the solutions of fourth order

partial differential equations», Kunamoto. J Sci.(Math), 9, 87-116, 1973.

[ODE 93) 0DEN J. T., Wu W., LEGAT V., « An hp adaptive strategy for finite

element approximation of the Navier-Stokes equations », Proceedings of the

VIII international conference on finite elements in fluid, 20-23 September 1993,

p. 32-43, Barcelona, CIMNE (Pineridge Press).

[QUA 93] QUARTAPELLE L., Numerical solution of the incompressible NavierStokes

equations, Birkhiiuser, Basel, 1993.

[ROA 72] ROACHE P. J., Computational Fluid Dynamic, Hennosa, Albuquerque,

N. M., 87108, 1972.

[RUA 93] RUAS V., GHADI F.,« Numerical solution ofthe incompressible NavierStokes

equations by optimally approximation the Stream function and the vorticity

», Proceedings of the VIII international conference on finite elements in

fluids, 20-23 September 1993, p. 156-165, Barcelona, CIMNE (Pineridge Press).

[RUA 91] RUAS V., «Variational approaches to the two-dimensional Stokes system

in tennes of the vorticity », Mech. Research Communications, Vol. 18(6), 359-

, 1991.

[RUA 94] RUAS V., «On Fonnulation of Vorticity systems for a viscous incompressible

flow with numerical applications», ZAMM Z. Angew, Math. Mech. 74, 1,

-55, 1994.

[RUA 951] RUAS V ., « Iterative Solution of the Stationary Incompressible NavierStokes

Equations in Stream Function-Vorticity Fonnulation », CRAS de Paris,

t. 321,381-386, 1995.

[RUA 952] RUAS V., «Approximating Harmonic Bases in a Decoupled Solution of

Viscous Flow Equations in 'ljJ-w Formulation», ZAMM Z Angew, Math. Mech.

, 5, 407-408, 1995.

Downloads

Published

2000-05-31

How to Cite

Ghadi, F. A. ., Ruas, V. ., & Wakrim, M. . (2000). Simulation numerique par nne methode d’ elements finis optimale des equations de N avier-Stokes en formulation. European Journal of Computational Mechanics, 9(5), 591–609. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2889

Issue

Section

Original Article