Methodes d 'elements spectra ox pour des problemes hybrides duaux de second ordre axisymetriques

Application a l'algorithme de projection de Goda

Authors

  • Mejdi Azaiez Institut de Mecanique des Fluides, (UMR 5502)
  • Faker Ben Belgacem Mathematiques pour l' /ndustrie et Ia Physique, ( UMR 5640) Universite Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex
  • Hicham Khallouf Mecanique et Dynamique des Systemes (MEDYSYS) 29 rue Jean Rostand, 91893 Orsay cedex

Keywords:

axisymmetric, mixed spectral elements, projection, Darcy, Navier-Stokes

Abstract

The subject of this paper consists in studying the second order elliptic equations under the hybrid dual formulation, in an axisymmetric context and their discretization by spectral methods. Next, we present a spectral approximation, based on staggered grids, without spurious modes and we give optimal error estimates in mono- and multi-domain configurations. We describe the implementation of this method and carry out a numerical discussion to quantify its efficiency. Then, we use this technique for the approximation of the projection step of second order Goda algorithm applied to the numerical simulation of the unsteady Stokes equations and we prove unconditonal stability of the resulting scheme. Finally, some numerical experiments are provided showing the ability of such a technique to simulate a axisymetric Navier-Stokes flow.

Downloads

Download data is not yet available.

References

[BAB 87] BABUVSKA 1., SURI M., « The optimal Convergence Rate on the p-Version of the

Finite Element Method "• SIAM J. Numer. Anal., vol. 24, 1987, p. 750-776.

[BER 91] BERNARDI C., MADAY Y., « Polynomial Approximation of Some Singular Functions

"• Applicable Analysis: an International Journal, vol. 10, 1991, p. 1-32.

[BER 92] BERNARDI C., MADAY Y., Approximations spectrales de problemes aux limites

elliptiques, Mathematiques et Applications, Paris, 1992.

[BOL 83] BOLAND J., NICOLAIDES R., « Stability of Finite Element under Divergence

Constraints "• SIAM 1. Num. Anal., vol. 20, 1983, p. 722-731.

[BOU 94] BOUKIR K., ~ Methode en temps d'ordre eleve par decomposition d'operateurs.

Application aux equations de Navier-Stokes •. These de doctoral, Universite Pierre et

Marie Curie, 1994.

[BRE 74] BREZZI F., « On the Existence, Uniqueness and Approximation of Saddle Point

Problems Arizing from Lagrange Multipliers •, R.A.I.R.O. Anal. Numer., vol. 8 R2, 1974,

p. 129-151.

[BRE 91] BREZZI F., FORTIN M., Mixed and Hibryd Finite Element Methods, Springer Series

in Computational Mathematics, Springer Verlag, New York, 1991.

[C.B 92] C. BERNARDI M. D., MADAY Y.," Polynomials in Weighted Sobolev Spaces: Basics

and Trace Liftings "• rapport de recherche n° R92039, 1992, Laboratoire d' Analyse

Numerique Universite Pierre et Marie Curie, Paris 6.

[C.B 94] C. BERNARDI M. D., MADAY Y., « Numerical Analysis and Spectral Methods in

Axisymmetric Domains, Part 1: Functional Prerequisite "· rapport de recherche n° R94008,

, Laboratoire d' Analyse Numerique Universite Pierre et Marie Curie, Paris 6.

[C.B 99] C. BERNARDI M. D., MADAY Y., Spectral Methods for Axisymmetric Domains,

Series in Applied Mathematics, Paris, 1999.

[C.C 87] C. CANUTO M.Y. HUSSAIN! A. Q., ZANG T., Spectral Methods in Fluid Dynamics,

Springer-Verlag, 1987.

[CHO 68] CHORIN A., « Numerical Simulation of the Navier-Stokes Equations »,

Math. Comput., vol. 22, 1968, p. 745-762.

[DAU 87] DAUTRAY R., LIONS J.-L., Analyse mathematique et calcul nwnerique pour les

sciences etles techniques, Masson, Paris, 1987.

[DAU 88] DAUGE M., Elliptic Boundary Value Problems on Corner Domains, Lecture Notes

in Mathematic, Paris, 1988.

[GIR 81] GIRAULT V., RAVIART P.-A., Finite Elements Approximation for the Navier-Stokes

Equations, Lectures Notes in Mathematics. A. Do1d and B. Eckman eds, Paris, 1981.

[GIR 86] GIRAULT V., RAVIART P.-A., Finite Element Methods for the Navier-Stokes Equations,

Theory and Algorithms, Springer-Verlag, Paris, 1986.

[GOD 79] GODA K., « A Multistep Technique with Implicit Difference Schemes for Calculating

vo and Three dimensional Cavity Flows "• 1. Compu. Physics, vol. 30, 1979,

p. 76-95.

[GUE 94] GUERMOND J.-L., « Remarques sur les methodes de projection pour !'approximation

des equations de Navier-Stokes "• Numer. Math., vol. 67, 1994, p. 467-473.

[JEN 90] JENSEN S., VOGELIUS M.," Divergence Stability in Connection with the p- Version

of the Finite Element Method "·Model. Math. et Anal. Numer., vol. 24, 1990, p. 737-767.

[KAN 86] KAN J. V., « A Second Order Accurate Pressure-Correction Scheme for Viscous

Incompressible Flow "• SIAM J. Sci. Compu., vol. 7, 1986, p. 870-891.

[M.A 94] M. AZAIEZ C. B., GRUNDMANN M., ~ Spectral MethJd Applied to Porous Media

»,East-West J. Numer. Math., vol. 2, 1994, p. 91-105.

[M.A 95] M. AZAIEZ M. D., MADAY Y., Methodes spectrales et des elements spectraux,

Editions Didactique INRIA, Paris, 1995.

[M.A 98] M. AZAIEZ F. BEN BELGACEM M.G., KHALLOUF H.,~ Staggered Grids Hybrid

Dual Spectral Element Method. Application to the High-Order Time Splitting Schemes for

Navier-Stokes problem », Computer Methods of Appl. Mech. Engrg., vol. 166, 1998,

p. 183-199.

[MAD 92] MADAY Y., PAVONI D., « Spectral Approximation of Axisymmetric Stokes

Flow. », rapport de recherche n° R92034, 1992, Laboratoire d' Analyse Numerique Universite

Pierre et Marie Curie, Paris 6.

[MAD 94] MADAY Y., PATERA A., • Spectral Element Method for Navier-Stokes Equations

», in Noor( ed.) State-of-the-Art-Surveys in Computationnal Mechanics, vol. 139,

, p. 71-143.

[RAY 77] RAVIART P.-A., THOMAS 1.-M., • A Mixed Finite Element Method for Second

Order Elliptic Problems », Mathematical Aspects of fmite Element Methos, Roma, 1975,

, Springer-Verlag, p. 292-315.

[R.E 64] R. E. LYNCH 1. R. R., THOMAS D. H., • Direct solution of partial difference equations

by tensor product methods "• Numer. Math., vol. 6, 1964, p. 185-199.

[ROB 91] ROBERTS 1. E., THOMAS 1.-M., « Mixed and Hybrid Methods Numerical Analysis

"• Handbook of Numerical Analysis, Roma, 1975, 1991, Elsevier Science Publishers

B.V., North Holland, p. 1523-1639.

(SHE 92] SHEN J., • On Error Estimation of the Projection Method for Unsteady NavierStokes

Equations: First Order Schemes », SIAM. J. Numer. Anal., vol. 29, 1992, p. 57-77.

(SHE 94] SHEN 1 ., • Remarks on the Pressure Error Estimates for the Projection Methods »,

Numer. Math., vol. 67, 1994, p. 513-520.

[SHE 98] SHEN 1 ., LOPEZ 1. M., « An Efficient Spectral Projection Method for the NavierStokes

Equations in Cylindrical Geometries. I. Axisymmetric Cases », J. Compu. Physics,

vol. 139, 1998, p. 306-326.

[TEM 68] TEMAM R., « Une methode d'approximation de Ia solution des equations de

Navier-Stokes », Bull. Soc. Math. France, vol. 98, 1968, p. 115-152.

[THO 77] THOMAS 1.-M., ~ Sur !'analyse numerique des methodes d'elements finis hybrides

et mixtes »,These d'etat, Universite Pierre et Marie Curie, 1977.

[TRI 78] TRIEBEL H., Interpolation Theory, Function spaces, Differential operators, North

Holand, 2nd edition, 1978.

Downloads

Published

1999-08-09

How to Cite

Azaiez, M. ., Belgacem, F. B. ., & Khallouf, H. . (1999). Methodes d ’elements spectra ox pour des problemes hybrides duaux de second ordre axisymetriques: Application a l’algorithme de projection de Goda. European Journal of Computational Mechanics, 8(8), 821–846. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/2967

Issue

Section

Original Article