Fluid-solid-electric energy transport along piezoelectric flags

Authors

  • Yifan Xia LadHyX – Département de Mécanique, Ecole Polytechnique – CNRS, Palaiseau Cedex, France
  • Olivier Doaré IMSIA, ENSTA ParisTech, CNRS, CEA, EDF, Université Paris-Saclay, Palaiseau Cedex, France
  • Sébastien Michelin LadHyX – Département de Mécanique, Ecole Polytechnique – CNRS, Palaiseau Cedex, France

Keywords:

Fluid–solid interactions, energy harvesting, piezoelectric materials, flag instability

Abstract

The fluid–solid–electric dynamics of a flexible plate covered by interconnected piezoelectric patches in an axial steady flow are investigated using numerical simulations based on a reducedorder model of the fluid loading for slender structures. Beyond a critical flow velocity, the fluid–solid instability results in large amplitude flapping of the structure. Short piezoelectric patches positioned continuously along the plate convert its local deformation into electrical currents that are used within a single internal electrical network acting as an electric generator for the external output circuit. The relative role of the internal and external impedance on the energy harvesting of the system is presented and analysed in the light of a full modelling of the electric and mechanical energy exchanges and transport along the structure.

Downloads

Download data is not yet available.

References

Akcabay, D. T., & Young, Y. L. (2012). Scaling the dynamic response and energy harvesting

potential of piezoelectric beams. Applied Physics Letters, 101, 264104.

Alben, S. (2009). Simulating the dynamics of flexible bodies and vortex sheets. Journal of

Computational Physics, 228, 2587–2603.

Antoine, G. O., de Langre, E., &Michelin, S. (2016). Optimal energy harvesting from vortexinduced

vibrations of cables. Proceedings of the Royal Society A, 472, 20160583.

Banerjee, S., Connell, B. S. H., & Yue, D. K. P. (2015). Three-dimensional effects on flag

flapping dynamics. Journal of Fluid Mechanics, 783, 103–136.

Barrero-Gil, A., Alonso, G., & Sanz-Andres, A. (2010). Energy harvesting from transverse

galloping. Journal of Sound and Vibration, 329, 2873–2883.

Bernitsas,M.M., Raghavan, K., Ben-Simon, Y.,&Garcia, E. M. H. (2008). VIVACE (Vortex

Induced Vibration Aquatic Clean Energy): A new concept in generation of clean and

renewable energy from fluid flow. The Journal of OffshoreMechanics and Arctic Engineering,

, 041101.

Bisegna, P., Caruso, G., & Maceri, F. (2006). Optimized electric networks for vibration

damping of piezoactuated beams. Journal of Sound and Vibration, 289, 908–937.

Blevins, R. (1990). Flow-induced vibration (2nd ed.). New York, NY: Van Nostrand Reinhold.

Broyden, C. G. (1965). A class of methods for solving nonlinear simultaneous equations.

Mathematics of Computation, 19, 577–593.

Candelier, F., Boyer, F., & Leroyer, A. (2011). Three-dimensional extension of lighthill’s

large-amplitude elongated-body theory of fish locomotion. Journal of Fluid Mechanics, 674,

–226.

Candelier, F., Porez, M., & Boyer, F. (2013). Note on the swimming of an elongated body in

a non-uniform flow. Journal of Fluid Mechanics, 716, 616–637.

Connell, B. S. H., & Yue, D. K. P. (2007). Flapping dynamics of a flag in uniform stream.

Journal of Fluid Mechanics, 581, 33–67.

Doaré, O.,&Michelin, S. (2011). Piezoelectric coupling in energy-harvesting fluttering flexible

plates: Linear stability analysis and conversion efficiency. Journal of Fluid Structure, 27,

–1375.

Eloy, C., Kofman, N., & Schouveiler, L. (2012). The origin of hysteresis in the flag instability.

Journal of Fluid Mechanics, 691, 583–593.

Eloy,C., Lagrange, R., Souilliez,C.,&Schouveiler, L. (2008). Aeroelastic instability of a flexible

plate in a uniform flow. Journal of Fluid Mechanics, 611, 97–106.

Eloy, C., Souilliez, C., & Schouveiler, L. (2007). Flutter of a rectangular plate. Journal of Fluid

Structure, 23, 904–919.

Giacomello, A., & Porfiri, M. (2011). Underwater energy harvesting from a heavy flag hosting

ionic polymer metal composites. Journal of Applied Physics, 109, 084903.

Grouthier, C., Michelin, S., Bourguet, R., Modarres-Sadeghi, Y., & de Langre, E. (2014). On

the efficiency of energy harvesting using vortex-induced vibrations of cables. Journal of

Fluid Structure, 49, 427–440.

Lighthill,M. (1971). Large-amplitude elongated-body theory of fish locomotion. Proceedings

of the Royal Society B, 179, 125–138.

Michelin, S., & Doaré, O. (2012). Energy harvesting efficiency of piezoelectric flags in axial

flows. Journal of Fluid Mechanics, 714, 489–504.

Michelin, S., Llewellyn Smith, S. G., & Glover, B. J. (2008). Vortex shedding model of a

flapping flag. Journal of Fluid Mechanics, 617, 1–10.

Mougel, J., Doaré, O., &Michelin, S. (2016). Synchronized flutter of two slender flags. Journal

of Fluid Mechanics, 801, 652–669.

Paidoussis, M. P. (1998). Fluid-structure interactions, slender structures and axial flows, Vol.

London: Academic Press.

Paidoussis, M. P. (2004). Fluid-structure interactions, slender structures and axial flows, Vol.

London: Academic Press.

Paidoussis,M. P., Price, S. J., & de Langre, E. (2014). Fluid-structure interactions. New York,

NY: Cambridge University Press.

Piñeirua, M., Doaré, O., & Michelin, S. (2015). Influence and optimization of the electrodes

position in a piezoelectric energy harvesting flag. The Journal of Sound and Vibration, 346,

–215.

Piñeirua, M., Michelin, S., Vasic, D., & Doaré, O. (2016). Synchronized switch harvesting

applied to piezoelectric flags. Smart Materials and Structures, 25, 085004.

Shelley, M., Vandenberghe, N., & Zhang, J. (2005). Heavy flags undergo spontaneous

oscillations in flowing water. Physical Review Letters, 94, 094302.

Singh, K.,Michelin, S., & de Langre, E. (2012). The effect of non-uniform damping on flutter

in axial flow and energy harvesting strategies. Proceedings of the Royal Society A, 468, 3620–

Tang, L., Païdoussis, M. P., & Jiang, L. (2009). Cantilevered flexible plates in axial flow: Energy

transfer and the concept of flutter-mill. The Journal of Sound and Vibration, 326, 263–276.

Taylor, G. (1952). Analysis of the swimming of long and narrow animals. Proceedings of the

Royal Society London A, 214, 158–183.

Virot, E., Amandolese, X., & Hémon, P. (2016). Coupling between a flag and a spring-mass

oscillator. Journal of Fluid Structure, 65, 447–454.

Xia, Y., Doaré, O., & Michelin, S. (2016). Electro-hydrodynamic synchronization of

piezoelectric flags. Journal of Fluid Mechanics, 65, 398–410.

Xia, Y., Michelin, S., & Doaré, O. (2015a). Fluid-solid-electric lock-in of energy-harvesting

piezoelectric flags. Physical Review Applied, 3, 014009.

Xia, Y., Michelin, S., & Doaré, O. (2015b). Resonance-induced enhancement of the energy

harvesting performance of piezoelectric flags. Applied Physics Letters, 107, 263901.

Xiao, Q., & Zhu, Q. (2014). A review on flow energy harvesters based on flapping foils. The

Journal of Fluids and Structures, 46, 174–191.

Zhang, J., Childress, S., Libchaber, A., & Shelley, M. (2000). Flexible filaments in a flowing

soap film as a model for one-dimensional flags in a two-dimensional wind. Nature, 408,

–839.

Zhu, Q. (2007). Numerical simulation of a flapping foil with chordwise or spanwise flexibility.

AIAA Journal, 45, 2448–2457.

Downloads

Published

2017-02-01

How to Cite

Xia, Y., Doaré, O., & Michelin, S. (2017). Fluid-solid-electric energy transport along piezoelectric flags. European Journal of Computational Mechanics, 26(1-2), 154–171. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/297

Issue

Section

Original Article