Couplage de modeles et de methodes numeriques pour I' electromagnetisme en domaine temporel
Keywords:
Electromagnetism, Maxwell equations, Vlasov-Poisson, Vlasov-Maxwell, Finite Volume, Finite DifferenceAbstract
This paper deals with coupling models and/or methods in electromagnetism. The first part of the paper is devoted to the coupling of physical models (Vlasov-Poisson, VlasovMaxwell) which describe some field-particle interactions. In the second part, we present a new hybrid finite difference/ finite volume scheme applied to the time domain Maxwell equations.
Downloads
References
[AKU 86] ASANO K, KOYOSHI et UKAI S., On the Vlasov-Poisson limit of the VlasovMaxwell
equation. Pattern and waves. Qualitative analysis of nonlinear differential equations,
Stud. Math. Appl. 18, 369-383.
[ADS 96] Assous F.,DEGOND P. et SEGRE J., Numerical approximation of the Maxwell
equations in inhomogeneous media by a P 1 conforming finite element method. 1. Comput.
Phys. 128, no. 2, 363-380.
[BEZ 93] BEZARD M., Boundary value problems for the Vlasov-Maxwell system. Semin.
Equ. Deriv. Partielles, Ec. Polytech., Cent. Math., Palaiseau Semin. 1992-1993, Exp. No.4,
p.
[BON 97] BONNET F., FEZOUI L. , Methode PML en volumes finis pour Ia resolution des
equations de Maxwell en maillage hybride 2-D. Rapport de recherche Cermics no 97-92,
[BPO 97] BONNET F. et POUPAUD F., Berenger absorbing boundary condition with time
finite-volume scheme for triangular meshes. Appl. Nwner. Math. 25, No.4, 333-354.
[BOP 97] BOSTAN M. et POUPAUD F., Solutions periodique au systeme de Vlasov Poisson
avec conditions aux limites. C.R. Acad. Sci. Paris, Serie I 325 1333-1336.
[BOS 99] BOSTAN M., Etude numerique et theorique du systeme de Vlasov Maxwell. These
en mathematiques appliquees, Ecole Nationale des Ponts et Chaussees, janvier 1999.
[DEG 86] DEGOND P., Local existence of solutions of the Vlasov-Maxwell equations and
convergence to the Vlasov-Poisson equations for infinite light velocity. Math. Methods
Appl., Sci. 8, 533-558.
[DEP 95] DEPEYRE S. , Stability analysis for finite volume schemes on rectangular and triangular
meshes applied to the two-dimensional Maxwell system. Rapport de recherche
Cermics no 95-40, 1995.
[DIL 89] DIPERNA R.J et LIONS P.L., Global weak solution of Vlasov-Maxwell systems,
Commun. on Pure and Appl. Math, XVII., 729-757.
[GUO 93] Guo Y., Global weak solutions of the Vlasov-Maxwell system with boundary
conditions. Commun. Math. Phys., 154, No.2, 245-263.
[HOL 83] HOLLAND R., Finite-difference solutions of Maxwell's equation in generalizd nonorthogonal
coordinates, IEEE Trans. Nucl. Sci., vol.NS-30, pp. 4589-4591, 1983.
[!PC 95] ISSAUTIER D.,POUPAUD F.,CIONI J.P. et FEZOUI L., A 2-D Vlasov-Maxwell solver
on unstructured meshes. Cohen, Gary (ed.), Mathematical and numerical aspects of
wave propagation. Proceedings of the third international conference, Mandelieu-La Napoule,
France, April 24--28, 1995.
[PIE 98] Progress in Electromagnetics research Symposiun. Proceedings 13 - 17 july, Cite
des Congres Nantes, France.
[POU 92] POUPAUD F., Boundary value problems for the stationary Vlasov-Maxwell system.
Forum Math. 4, No.5, 499-527.
[REM 98] REMAKI M., FEZOUI L. et POUPAUD F., Un nouveau schema de type volumes finis
applique aux equations de Maxwell en milieu heterogene. Rapport de recherche INRIA
no 3351, janvier 1998.
[REM 99] REMAKI M., A New Finite Volume Scheme for Solving Maxwell System, rapport
de recherche INRIA no 3725, juillet 1999.
[SCH 86] SCHAEFFER J ., The classical limit of the relativistic Vlasov-Maxwell system. Commun.
Math. Phys. I 04, 403-421.
[TAF 75] TAFLOVE A. et BRODWIN M. E., Numerical Solution of Steady-State Electromagnetic
Scattering problems Using the Time-Dependent maxwell's equations, IEEE Trans.
Antenna Propagat, vol.MTT-23, no. 8, pp. 623-630, August 1975.
[YEE 66] YEE K. S., Numerical solution of initial boundary value problem in isotropic media,
IEEE Trans. Antenna Propagat, vol.AP-14, no. 3, pp. 302-307, May 1966.
[YEE 87] YEE K. S., Numerical solution to Maxwell's equations with non-orthogonal grids,
Lawrence Livermore National Laboratory Tech. Report. UCRL-93268, Apr. 1987.
[YEE 94] YEE K. S. et CHEN J. S., The Finite-Difference Time-Domain (FDTD) and The
Finite-Volume Time-Domain (FVTD) Methods in Solving Maxwell's Equations , IEEETrans.
Antenna Propagat, vol. 45, no. 3, pp. 354-363, March 1997.