A co eight node finite element based on a shell theory

Comparison with the degenerated approach

Authors

  • Olivier Polit LM2S- UPRES A 8007- ENSAM 151 Bd de l'hopital- 75013 Paris and Universite Paris X- JUT- Dep. GMP 1 Chemin Desvallieres F-92410- Ville d'Avray
  • Maurice Touratier LM2S- UPRES A 8007- ENSAM 151 Bd de l'hopital- 75013 Paris

Keywords:

shell theory, degenerated approach, finite element, shear locking, membrane locking, linear static tests

Abstract

The development of ()l eight node shell finite elements based upon the ReissnerMindlin kinematics for geometrically and materially linear applications in structural mechanics is presented. Special attention is given ta the two ways of obtaining a shell finite element : shell theory and degenerated solid approach. We compare, with the same mechanical assumptions and the same finite element approximations, a new eight node semithick shell finite element based on a doubly curved shell theory ( M2D) and an eight node finite element based on the degenerated approach ( MDG ). These two finite elements have the same five degrees of freedom (three translations and two rotations), use an explicit integration throughout the thickness and the same methodology to avoid shear and membrane locking.

Downloads

Download data is not yet available.

References

[Ahm70] S. Ahmad, B.M. Irons, and O.C. Zienkiewicz. Analysis of thick and

thin shell structures by curved elements. Int. Jour. Num. Meth.

Eng., 2:419-451, 1970.

[ And93] U. Andel finger and E. Ramm. Bas-elements for two dimensional,

three dimensional, plate and shell structure and their equivalence to

hr-element. Int. Jour. Num. Meth. Eng., 36:1311-1337, 1993.

[Buc93] M.L. Bucalem and K.-J. Bathe. Higher-order mite general shell elements.

Int. Jour. Num. Meth. Eng., 36:3729-3754, 1993.

[Bat86] K.-J. Bathe and E.N. Dvorkin. A formulation of general shell elements-

the use of mixed interpolation of tensorial components. Int.

Jour. Num. Meth. Eng., 22:697-722, 1986.

[Bat92] J.L. Batoz and G. Dhatt. Modelling of structures by finite elements.

Hermes, Paris, 1992. (in french).

[Bue92] N. Buechter and E. Ramm. Shell theory versus degeneration - a

comparison in large rotation finite element analysis. Int. Jour. Num.

Meth. Eng., 34:39-59, 1992.

[Bab92] I. Babuska and M. Suri. On locking and robustness in the finite

element method. SIAM Jour. Numer. Anal., 51:221-258, 1992.

[Bel85] T. Belytschko, H. Stolarski, W.K. Liu, N. Carpenter, and J.S.-J.

Ong. Stress projection for membrane and shear locking in shell finite

elements. Camp. Meth. Applied Mech. and Eng., 51:221-258, 1985.

[Cha98] D. Chapelle and K.J. Bathe. Fundamental considerations for the finite

element analysis of shell structures. Camp. and Struc., 66(1):19-

, 1998.

[Coo74] R.D. Cook. Concepts and Applications of Finite Element Analysis.

J. Wileys and Sons, New-York, 1974.

[Gil91] W. Gilewski and M. Radwanska. A survey of finite element models

for the analysis of moderately thick shells. Finite Elements in

Analysis and Design, 9:1-21, 1991.

[Hin86] E. Hinton and H.C. Huang. A family of quadrilateral mindlin plate

elements with substitute shear strain fields. Camp. and Struc.,

(3):409-431, 1986.

[Hua86] H.C. Huang and E. Hinton. A new nine node degenerated shell

element with enhanced membrane strain interpolation. Int. Jour.

Num. Meth. Eng., 22:73-92, 1986.

[Ide81] S. ldelsohn. On the use of deep, shallow or flat shell finite elements

for the analysis of thin shell structures. Camp. Meth. Applied Mech.

and Eng., 26:321-330, 1981.

[Mac85] R.H. MacNeal and R.L. Harder. A proposed set of problems to test

finite element accuracy. Finite Elements in Analysis and Design,

:3-20, 1985.

[Mac92] R.H. MacNeal and R.L. Harder. Eight nodes or nine? Int. Jour.

Num. Meth. Eng., 33:1049-1992, 1992.

[Noo89] A.K. Noor. List of books, monographs, conference proceeding and

survey papers on shells. In Noor et al., editor, Analytical and Computational

Models of Shells, volume 3, pages 7-33, 1989.

[Pin89] P.M. Pinsky and R.V. Jasti. On the use of bubble functions for

controlling accuracy and stability of mixed shell finite elements. In

Noor et al., editor, Analytical and Computational Models of Shells,

volume 3, pages 359-382, 1989.

[Pol92] 0. Polit. Developpement d'elements finis de plaques semi-epaisses et

de coques semi-epaisses d double courbure. PhD thesis, University

P. and M. Curie, Paris VI, 1992.

[Par89] K.C. Park, E. Pramono, G.M. Stanley, and H.A. Cabiness. The ans

shell elements : earlier and recent improvements. In Noor et al.,

editor, Analytical and Computational Models of Shells, volume 3,

pages 359-382, 1989.

[Pol94] 0. Polit, M. Touratier, and P. Lory. A new eight-node quadrilateral

shear-bending plate finite element. Int. Jour. Num. Meth. Eng.,

:387-411, 1994.

[Sim89] J.C. Simo, D.D. Fox, and M.S. Rifai. On a stress resultant geometrically

exact shell model. part ii : the linear theory ; computational

aspects. Comp. Meth. Applied Mech. and Eng., 73:53-92, 1989.

[San89] E. Sanchez-Palencia. Statique et dynamique des coques minces. i. cas

de flexion pure non inhibee. C.R. Acad. Sci. Paris, t.309:411-417,

[Wem89] G. Wempner. Mechanics and finite elements of shells. App. Mech.

Rev., 42(5):129-142, 1989.

[Yan90] H.T.Y. Yang, S. Saigal, and D.G. Liaw. Advances of thin shell

finite elements and some applications- version i. Camp. and Struc.,

(4):481-504, 1990.

Downloads

Published

1999-02-06

How to Cite

Polit, O., & Touratier, M. (1999). A co eight node finite element based on a shell theory: Comparison with the degenerated approach. European Journal of Computational Mechanics, 8(2), 111–134. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3025

Issue

Section

Original Article