Coalescence-induced jumping of immersed and suspended droplets onmicrostructured substrates

Authors

  • Samaneh Farokhirad Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, PA, USA
  • Mahmood Mohammadi Shad Department of Mechanical Engineering, City College of City University of New York, New York, NY, USA
  • Taehun Lee Department of Mechanical Engineering, City College of City University of New York, New York, NY, USA

DOI:

https://doi.org/10.13052/17797179.2017.1306830

Keywords:

Lattice Boltzmann method, droplet coalescence, structured superhydrophobic substrate, self-propelled jumping, Wenzel–Cassie wetting

Abstract

The coalescence-induced jumping of liquid droplets on superhydrophobic structured substrates is investigated numerically using a three-dimensional multiphase lattice Boltzmann method. The numerical experiments on evolution of droplets during jumping process show higher jumping velocity and height from superhydrophobic substrates structured with a periodic array of square pillars, than flat superhydrophobic substrateswith an equilibrium contact angle of 180◦. The results further reveal a strong effect of pillars on the vertical jumping velocity and the final quasiequilibrium height of the merged droplet as a function of air and liquid viscosity, as well as air inertia. As for substrate wettability, it is found that, compared to the flat superhydrophobic substrate, the critical contact angle where the merged droplet jumps away from substrate is reduced for pillared substrate and is about 120◦. It is also observed that the droplet initial placement on a substrate with a square array of pillars has an important effect on the spontaneous jumping of the coalesced droplet, and a Wenzel–Cassie wetting transition upon coalescence is observed for droplets that are initially immersed within the pillars.

Downloads

Download data is not yet available.

References

Boreyko, J. B., & Chen, C. H. (2009). Self-propelled dropwise condensate on

super-hydrophobic surfaces. Physics Review Letters, 103, 184501. doi:10.1103/Phys-

RevLett.103.184501

Cahn, J. W. (1977). Critical-point wetting. The Journal of Chemical Physics, 66, 3667–3672.

doi:10.1063/1.434402

Chen, C. H., Cai, C. L., Tsai, C. L., Chen, C. L., Xiong, G., Yu, Y., & Ren, Z. (2007).

Dropwise condensation on superhydrophobic surfaces with two tier roughness. Applied

Physics Letters, 90, 173108. doi:10.1063/1.2731434

Chen, X. M., Wu, J., Ma, R. Y., Hua, M., Koratkar, N., Yao, S. H., & Wang, Z. K.

(2011). Nanograssed micropyramidal architectures for continuous dropwise condensation.

Advanced Functional Materials, 21, 4617–4623. doi:10.1002/adfm.201101302

Chen, X., Patel, R. S.,Weibel, J. A.,&Garimella, S.V. (2016). Coalescence-induced jumping of

multiple condensate droplets on hierarchical superhydrophobic surfaces. Scientific Reports,

, 18649. doi:10.1038/srep18649

Farokhirad, S.,Morris, J. F.,&Lee, T. (2015). Coalescence-induced jumping of droplet: Inertia

and viscosity effects. Physics of Fluids, 27, 102102. doi:10.1063/1.4932085

Feng, J., Qin, Z. Q., & Yao, S. H. (2012). Factors affecting the spontaneous motion

of condensate drops on superhydrophobic copper surfaces. Langmuir, 28, 6067–6075.

doi:10.1021/la300609f

Forsberg, P., Nikolajeff, F., & Karlsson, M. (2011). Cassie-Wenzel and Wenzel-Cassie

transitions on immersed superhydrophobic surfaces under hydrostatic pressure. Soft

Matter, 7, 104–109. doi:10.1039/C0SM00595A

Kim, A., Lee, C., Kim, H., & Kim, J. (2015). Simple approach to superhydrophobic

nanostructured Al for practical anti-frosting application based on enhanced selfpropelled

jumping droplets. ACS Applied Materials and Interfaces, 7, 7206–7213.

doi:10.1021/acsami.5b00292

Lee, T. (2009). Effects of incompressibility on the elimination of parasitic currents in the

lattice Boltzmann equation method for binary fluids. Computers and Mathematics with

Applications, 58, 987–994. doi:10.1016/j.camwa.2009.02.017

Lee, T., & Liu, L. (2010). Lattice Boltzmann simulations of micron-scale drop impact on dry

surfaces. Journal of Computational Physics, 229, 8045–8063. doi:10.1016/j.jcp.2010.07.007

Liu, F., Ghigliotti,G., Feng, J. J.,&Chen, C. H. (2014). Numerical simulations of self-propelled

jumping upon drop coalescence on non-wetting surfaces. Journal of Fluid Mechanics, 752,

–65. doi:10.1017/jfm.2014.320

Liu, L.&Lee, T. (2009). Wall free energy based polynomial boundary conditions for non-ideal

gas lattice Boltzmann equation. International Journal of Modern Physics, 20, 1749–1768.

doi:10.1142/S0129183109014710

Liu, T. Q., Sun, W., Sun, X. Y., & Ai, H. R. (2012). Mechanism study of condensed

drops jumping on super-hydrophobic surfaces. Colloids and Surfaces A, 414, 366–374.

doi:10.1016/j.colsurfa.2012.08.063

Liu, X., & Cheng, P. (2015). 3D multiphase lattice Boltzmann simulations for

morphological effects on self-propelled jumping of droplets on textured superhydrophobic

surfaces. International Communications in Heat and Mass Transfer, 64, 7–13.

doi:10.1016/j.icheatmasstransfer.2015.03.002

Miljkovic, N., Enright, R., Nam, Y., Lopez, K., Dou, N., Sack, J., & Wang, E. N. (2013).

Jumping-droplet-enhanced condensation on scalable super-hydrophobic nanostructured

surfaces. Nano Letters, 13, 179–187. doi:10.1021/nl303835d

Miljkovic, N., Enright, R., & Wang, E. N. (2012). Effect of droplet morphology on growth

dynamics and heat transfer during condensation on superhydrophobic nanostructured

surfaces. NANO, 6, 1776–1785. doi:10.1021/nn205052a

Miljkovic, N., Enright, R., & Wang, E. N. (2013). Modeling and optimization of superhydrophobic

condensation. Journal of Heat Transfer, 135, 111004. doi:10.1115/1.4024597

Nam, Y., Kim, H., & Shin, S. (2013). Energy and hydrodynamic analysis of coalescenceinduced

jumping droplets. Applied Physics Letters, 103, 161601. doi:10.1063/1.4825273

Peng, B., Wang, S., Lan, Z., Xu, W., Wen, R., & Ma, X. (2013). Analysis of droplet jumping

phenomenon with lattice Boltzmann simulation of droplet coalescence. Applied Physics

Letters, 102, 151601. doi:10.1063/1.4799650

Shi, Y., Tang, G., & Xia, H. (2015). Investigation of coalescence-induced droplet

jumping on superhydrophobic surfaces and liquid condensate adhesion on slit

and plain fins. International Journal of Heat and Mass Transfer, 88, 445–455.

doi:10.1016/j.ijheatmasstransfer.2015.04.085

Wang, F. C., Yang, F., & Zhao, Y. P. (2011). Size effect on the coalescence-induced selfpropelled

droplet. Applied Physics Letters, 98, 053112. doi:10.1063/1.3553782

Wenzel, R. N. (1936). Resistance of solid surfaces to wetting by water. Industrial and

Engineering Chemistry Research, 28, 988–994. doi:10.1021/ie50320a024

Wisdom, K. M., Watson, J. A., Liu, F., Watson, G. S., & Chen, C. H. (2013). Selfcleaning

of super-hydrophobic surfaces by self-propelled jumping condensate. Proceedings

of the National Academy of Sciences of the United States of America., 110, 7992–7997.

doi:10.1073/pnas.1210770110

Zhang, R., Farokhirad, S., Lee, T., & Koplik, J. (2014). Multiscale liquid drop impact on

wettable and textured surfaces. Physics of Fluids, 26, 082003. doi:10.1063/1.4892083

Downloads

Published

2019-01-16

How to Cite

Farokhirad, S., Shad, M. M., & Lee, T. (2019). Coalescence-induced jumping of immersed and suspended droplets onmicrostructured substrates. European Journal of Computational Mechanics, 26(1-2), 205–223. https://doi.org/10.13052/17797179.2017.1306830

Issue

Section

Original Article