Generation automatique de maillages tridimensionnels respectant une carte de taille
Keywords:
mesh generation, finite element, adaptation, Delaunay, adapted mesh, isotropie meshAbstract
Constructi11g a mesh is an esse11tial pre-requisite for any computational process using a finite element approach. This paper describes a 3D mesh generation method which aims at constructing a tetrahedral mesh whose eleme11ts conform a pre-specified size. Such a method would be a natural component of any mesh adaptatiol! process included in a (mesh construction, solution, error estimate) computatio11al scheme.
Downloads
References
[BAK 88] T.J. BAKER, Generation of tetrahedral meshes around complete aircraft, Numerical
grid generation in computational fluid mechanics '88, Miami, 1988.
[BOR 97] H. BOROUCHAKI, P.J. FREY, Optimization tools for Adaptive Surface Meshing,
Trends in Unstructured Mesh Generation, AMD, 220, 81-88, McNU'97, Chicago, 1997.
[BOR 96] H. BOROUCHAKI, P.L. GEORGE, Triangulation de Delaunay et metrique riemannienne.
Applications aux maillages elements finis, Revue europeennedes elements finis, 5(3),
-340, 1996.
[CHE 88] J.H. CHENG, P.M. FINNIGAN, A.F. HATHAWAY, A. KELA, W.J. SCHOEDER,
Quadtree/octree meshing with adaptive analysis, Numerical grid generation in computational
fluid mechanics '88, Miami, 1988.
[CIA 78] P.G. CIARLET, The finite elemellt method for elliptic problem, North Holland, 1978.
[GEO 91a] P.L. GEORGE, Generation automatique de mail/age. Applications aux methodes
d'elimentsfinis, Masson, RMA n° 16, Paris, 1991. Also as Automatic mesh generation.
Applications to finite element methods, Wiley, 1991.
[GEO 96] P.L. GEORGE, Automatic Mesh Generation and Finite Element Computation, in
Handbook of Numerical Analysis, vol IV, Finite Element methods (Part 2), Numerical Methods
for Solids (Part 2), P.G. Ciarlet and J.L. Lions Eds, North Holland, 69-190, 1996.
[GEO 97a] P.L. GEORGE, Improvement on Delaunay based 3D automatic mesh generator,
Finite Elements in Analysis and Design, 25(3-4), 297-317, 1997.
[GEO 97b] P.L. GEORGE, H. BOROUCHAKI, Triangulation de Delaunay et mail/age. Applications
aux elements finis, Hermes, Paris, 1997.
[GEO 9lb] P.L. GEORGE, F. HECHT, E. SALTEL, Automatic mesh generator with specified
boundary, Comp. Meth. in Appl. Mech. and Eng., 92, 269-288, 1991.
[GEO 9lc] P.L. GEORGE, F. HECHT, M.G. VALLET, Creation of internal points in Voronoi's
type method, Control and adaptation, Adv. in Eng. Soft., 13(5/6), 303-313, 1991.
[GEO 92] P.L. GEORGE, F. HERMELINE, Oelaunay's mesh of a convex polyhedron in dimension
d. Application to arbitrary polyhedra, Int. Jour. Num. Meth. Eng., 33, 975-995, 1992.
[LOH 88] R. LOHNER, P. PARIKH, Generation of 30 unstructured grids by advancing front
method, AIAA 26 Aerospace Sciences meeting, Reno Nevada, 1988.
[RAS 95] A. RASSINEUX, Maillage automatique tridimensionnel par une methode frontale
pour Ia methode des elements finis, These, Nancy I, 1995.
[RAS 97] A. RASSINEUX, Maillage automatique tridimensionnel par une technique frontale
et respect d'une carte de taille, Revue europeenne des elements finis, 6(1 ), 43-70, 1997.
[SHE 88] M.S. SHEPHARD, F. GUERINONI, J.E. FLAHERTY, R.A. LUDWIG, P.L. BAEHMANN,
Finite octree mesh generation for automated adaptive 30 flow analysis, Numerical
grid generation in computational fluid mechanics '88, Miami, 1988.
[VAL 92] M.G. VALLET, Generation de maillages elements finis anisotropes et adaptatifs,
These, Universite Paris 6, 1992.
[WAT 81] O.F. WATSON, Computing the n-dimensionnal Oelaunay tesselation with applications
to Voronoi polytopes, Computer Journal, 24(2), 167-172, 1981.
[WEA 90] N.P. WEATHERILL, The integrity of geometrical boundaries in the 2-dimensional
Oelaunay triangulation, Comm. in Appl. Num. Meth., 6, 101-109, 1990.
[YER 84] M.A. YERRI, M.S. SHEPHARD, Automatic 30 mesh generation by the modifiedoctree
technique, Int. Jour. Nwn. Meth. Eng., 20, 1965-1990, 1984.