Schemas explicites d' ordre eleve pour les problemes non lineaires de mecanique des structures

Authors

  • Mohamed Rachik Laboratoire de Genie Mecanique pour les Materiaux et /es Structures UP RES A 6066, UTC/GSM/Division MNM Pole Modelisation de Picardie BP529 F-60206 Compiegne
  • Jean Marc Roelandt Laboratoire de Genie Mecanique pour les Materiaux et /es Structures UP RES A 6066, UTC/GSM/Division MNM Pole Modelisation de Picardie BP529 F-60206 Compiegne

Keywords:

non-linear problems, explicit schemes, Runge-Kutta method, instabilities, prescribed displacement analysis

Abstract

This paper presents some numerical schemes for non-linear structural mechanic problems. The proposed algorithms are non-iterative and are associated with technics for time step size and error control. We treat the discrete equilibrium relation as a system of ordinary differential equations. This system is then solved with a fourth order Runge-Kutta method. In order to use these algorithms for numerical simulation of sheet forming processes where instabilities occur we have developed a prescribed displacement technique analysis. The results obtained on bulge test and thermoforming examples show a great computational cost economy in comparison with the iterative Newton-Raphson method.

Downloads

Download data is not yet available.

References

[ABB96] A. J. ABBO, S. W. SLOAN, « An automatic load stepping algorithm with error

control», Int. J Num. Meth. Eng. Vol. 39, pp. 1337-1759, 1996.

[BAT86) J. L. BATOZ, G. DHATT, Plaques et coques par elements finis analyse lineaire et non

lineaire, Cours IPS!, Paris 2-4 juin 1986.

[BEN94) S. BEN CHAABANE, Contribution a Ia simulation numerique de Ia mise en forme des

corps creux plastiques, These de Doctorat de l'Universite de Technologic de Compiegne,

[DAB94) J. DABOUNOU, Resolution des problemes de grandes transformations par Ia methode

des elements finis, These de Doctorat de l'Universite de Technologic de Compiegne,

[DAT84) G. DHATT, G. TOUZOT, Une presentation de Ia methode des elements finis, Maloine

S. A. editeur, 1984.

[DEB87) 0. DEBORDES,M. EL MOUATASSIM, G. TOUZOT, « Local numerical integration of

large strain elasto-plastic constitutive laws », Second International Conference and Short

Course On Constitutive Laws For Engineering Materials; Theory and Application.

Tucson, USA, 1987.

[DEL91] H. G. DELORENZI, H. F. NIED, Finite element simulation of thermoforming and blow

molding, Molding of polymer processing, edited by A. I. !SA YEV, Hanser publishers,

[EBE93) R. EBERLEIN, P. WRIGGERS, R. L. TAYLOR,« A fully non-linear axisymmetrical

quasi-Kirchhoff-type shell element for rubber-like materials »,Int. J Num. Meth. Eng.,

Vol. 36, pp. 4027-4043, 1993.

[ENG96) G. ENGELN-MULLGES, F. UHLIG, Numerical Algorithms whith Fortran, SpringerVerlag

[FAF85) J.L. BATOZ, G. DHATT, M. FAFARD, Algorithmes de calcul automatique des

configurations pre et post-flambement, Colloque Tendances Actuelles en Calcul des

Structures, Bastia, 6-8 novembre 1985.

[HUG82) T. J. R. HUGHES, E. CARNOY, « Nonlinear element shell formulation accounting for

large membrane strain», Comp. Meth. in Applied Eng., Vol. 39, pp. 69-82, 1983.

[NUM95] « Simulation of materials processing Theory, Methodes and Applications »,

Numiform 95, Edited by Shan Fu Shen and P.R. Dawson, Cornell University.

[NUM96] Numerical Simulation of 3-D Sheet Metal Forming Processes, Verification of

simulations with Experiments, Dearborn, Michigan, September 29-0ctober 3, 1996,

Edited by J. K. Lee and G. L. Kinzel, R. H. Wagoner, The Ohio State University.

[PRE94) W. H. PRESS, S. A. TEUKOLSKY, W. T. VEHERLING, B. P. FLANNERY, Numerical

recipes, Cambridge University Press, Second edition 1994.

[RAC93] M. RACHIK, Simulation de Ia mise en forme des structures minces (soufflage des

plastiques et emboutissage des toles), These de Doctorat de l'Universite de Technologic

de Compiegne, 1993.

(RAC94] M. RACHIK, J. M. ROELANDT, J. L. BATOZ, « Simulation numerique du soufflage et

du thermoformage des plastiques »,Revue Europ. Elf!m. Fin., Vol. 3, pp. 187-210, 1994.

[SIM86] J. C. SIMO, R. TAYLOR, « A return mapping algorithm for plan stress elastoplasticity

»,Int. J. Num. Meth. Eng., Vol. 22, pp. 649-670, 1986.

[TOU93] G. Touzor. J. DABOUNOU, « Integration numerique de lois de comportement

elastoplastique )), Revue Europ. Etem. Fin., Vol. 2, pp. 465-494, 1993.

[W0090] W. L. Wooo, Practical Time-stepping Schemes, Clarendon Press, Oxford, 1990.

Downloads

Published

1998-04-22

How to Cite

Rachik, M. ., & Roelandt, J. M. . (1998). Schemas explicites d’ ordre eleve pour les problemes non lineaires de mecanique des structures. European Journal of Computational Mechanics, 7(4), 401–420. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3093

Issue

Section

Original Article