Resistance de plaques multiperforees : comparaison calcul - experience
Keywords:
limit analysis, homogenization of periodic media, finite element method, perforated plates, linear optimization, plasticityAbstract
This study concerns the strength prediction of heterogeneous ductile materials. On the one hand, we use the limit analysis theory with the kinematic and static methods and, on the other hand, the homogenization theory of periodic media. The corresponding programs use a RVE discretization with discontinuous finite elements for both stress and strain rates and they lead to linear optimization problems. The problem studied concern the evaluation of the uniaxial tensile strength of perforated sheets made up of different materials. A detailed comparison between our own numerical and experimental results is presented which is a satisfactory comparison for both the limit loads and the failure mechanics.
Downloads
References
[BOE 82] BOEHLER J.P.,RACLIN J., PASTOR J., TURGEMAN S., « Grandes deformations et
endommagement t » Rapport GRECO - CNRS, 1982.
[CAP 72] CAPURSO M .. « Limit analysis of continuous media with piecewise linear
programming>>, Int. Jl. Solids Struct., vol. 8, p. 1413-1431, 1972.
[COQ 87] CoQUARD N., << Le polisseur de boules »,Sciences et Vie Micro, n° 39, 1987.
[FRA 94] FRANCESCATO P., << Prevision du comportement plastique des materiaux hetero~nes
a constituants metalliques. Application aux composites a matrice metallique a fibres
continues et aux plaques perforees »,These, UJF Grenoble, 1994.
[FRA 95] FRANCESCATO P., PASTOR J., << Approches numeriques de Ia resistance des materiaux
composites unidirectionnels », CRAS, Serie II, t. 321, p.7-13, 1995.
[FRA 97] FRANCESCATO P., PASTOR J., <
strength of unidirectional fiber-reinforced composites by limit analysis methods », Eur.
Jl. Mech., vol. 16, no 2, p. 213-234, 1997.
[LEN 77] LE NIZHERY D., << Calcul a Ia rupture des materiaux composites», Symposium
franco-polonais, Cracovie 1977; in Problemes non lineaires de Mecanique, Acad. Sc.
Pologne, Varsovie, 1980, pp.359-370.
[LIT 84] LITEWKA A.,SAWCZUK A.,STANISLAWSKA J., <
damage evolution », Jl. Applied Mech., no 3, p. 675-688, 1984.
[MAG 91] MAGHOUS S., «Determination du critere de resistance macroscopique d'un
matenau heterogene a structure periodique : approche numerique », These de troisieme
cycle, ENPC, 1991.
[MAR 87] MARIGO J.J., MIALON P., MICHEL J.C., SUQUET P., « Un exemple de prevision des
charges limites d'une structure heterogene periodique >>, Jl Meca. Theo. Appl. (Eur. Jl.
Mech.), vol. 6, pp. 47-75, 1987.
[NEE 72] NEEDLEMAN A., «Void growth in an elastic-plastic medium», Jl. Appl Mech.,
vol. 39, p. 964-970, 1979.
[PAS 78] PASTOR J., «Analyse Limite : Determination Numerique de Solutions Statiques
Completes. Application au Talus Vertical», Jl. Meca. Theo. Appl. (Eur. Jl. Mech.), vol 2,
n° 2, p. 167-196., 1978.
[PAS 83] PASTOR J. ,<
Orthotropes de Revolution», These d'Etat, USMG ET INPG Grenoble, 1983.
[SAL 83] SALEN<;:ON J., Calcul a Ia Rupture et Analyse Limite, Presses ENPC, Paris, 1983.
[SUQ 82] SUQUET P., << Plasticite et homogeneisation »,These d'Etat, Univ. Paris VI, 1982.
[SUQ 85] SUQUET P., << Elements of Homogenization for Inelastic Solid Mechanics», in
Homogenization Techniques for Composite Media, CISM Lectures, Springer Verlag,
Udine, 1985.
[THA 97] THAI T.H., << Analyse Limite : Application aux structures et aux materiaux poreux »,
These, Universite de Savoie, Chambery, 1997.
[TUR 76] TURGEMAN S., <
!'analyse limite», These de troisieme cycle, Universite de Grenoble, 1976.
[TUR 87] TURGEMAN S., PASTOR J ., << Comparaison des charges limites d'une structure
heterogene et homogeneisee » Jl. Meca. Theo. Appl. ( Eur. Jl. Mech. ), no 6, p. 121-135,
[XPR 91] XPRESS - MP- Reference Manual, Dash Associated Ltd, Church Lane, Blisworth,
Northants, U.K, 1991.
[Z1E 77] ZIENKIEWICZ O.C, The Finite Element Method in Engineering Science. McGraw
Hill, New York, I st edition, 1967, 3rd edition 1977.