Consistent time discretization for a dynamical frictional contact problem and complementarity techniques
Keywords:
unilateral impact, impact, Coulomb friction, structure dynamics, implicit 0-method, finite elements, linear complementarity problem, mathematical programming, Lemke's methodAbstract
The dynamical problem of a viscoelastic body in volving unilateral contact and Coulomb friction is set so as to take into account accurately eventual discontinuities of the relative velocities when impacts occur. Several first order implicit numerical schemes for the time discretized equations of the problem are proposed. The results are compared to those of a higher order standard numerical scheme. The dicrete problem, with the velocity as unknown, set in terms of a complementarity problem which is solved by Lemke's mathematical programming method.
Downloads
References
[BAZ 93] BAZARAA, M., SHERALI, H., and SHETTY, C., (1993), "Non-linear
programming, theory and algorithms,", 2"dedition, John Wiley & Sons.
[CAR 91) CARPENTER, N., TAYLOR, R., and KATONA, M., (1991), "Lagrange
constraints for transient finite element surface contact", Int. J. Num. Meth. Eng.,
Vol 32, pp 103- 128.
[CHA 95] CHABRAND, P., DUBOIS, F., and RAOUS, M., (1995), "Programmation
mathematique pour le contact avec frottement et comparaison avec d'autres
methodes", in Acte1 du !ieme Colloque National en Calcul de• Structure, Hermes.
[COT 92] COTTLE, R., PANG, J., and STONE, R., (1992), "The linear complementarity
problem", Computer Science and Scientific Computing, Academic Press.
(HUG 76] HUGHES, T., TAYLOR, R., SACKMAN, J., CURNIER, A., and
KANOKNUKULCHAI, W ., {1976), "A finite element method for a class of contactimpact
problems", Comp. Meth. Appl. Mech. Eng, VolS, pp 249- 276.
(JEA 87] JEAN, M. and MOREAU, J ., {1987) in Unilateral problem• in 1tructural
analy1i1 - !, CISM Lecture1(Del Piero-Maceri, ed.), Vol 304, Springer Verlag.
(KIM 96] KIM, J. and KWAK, B., (1996), "Dynamic analysis of two-dimensional
frictional contact by linear complementarity problem formulation", Int. J. Salida
Structure•, Vol 33, no. 30, pp 4605- 4624.
[KLA 86] KLARBRING, A., {1986), "A mathematical programming approach to
three dimensional contact problems with friction", Comp. Meth. Appl. Mech. Eng.,
Vol 58, pp 175- 200 .
[LAU 93] LAURSEN, T. and SIMO, J ., (1993}, "A continuum-based finite element
formulation for the implicit solution of multibody, large deformation frictional contact
problems", Int. J. Num. Meth. Eng., Vol 36, pp 3451- 3484.
[MOR 88] MOREAU, J. J., {1988) in Topic1 in non-1mooth mechanic.t(MoreauPanagiatopoulos-
Strang, ed.), Birk.hauser Verlag.
[PAN 82] PANDIT, S. and DEO, S., (1982), "Differential systems involoving impulses",
Lectures Notes in Mathematics, Springer Verlag.
(RAO 88] RAOUS, M., CHABRAND, P., and LEBON, F., {1988), "Numerical methods
for frictional contact problems and applications", J. Theo. Appl. Mech., Special
Iuue, Vol 7, pp 111- 128.
(TAY 91] TAYLOR, R. and PAPADOPOULOS, P., (1991), "A finite element method
for dynamic contact problems", in The finite element method in the 1990'•(0iiatePeriaux-
Samuelsson, ed.), Springer Verlag.
[WRO 95] WRONSKI, M. and JEAN, M., (1995), "Some computational aspects of
structural dynamics problems with frictional contact", in Contact Mechanic.t, proceeding•
of the !nd C.M.I.S.(Raous-Jean-Moreau, ed.), Plenum.