Conception optimale des pieces mecaniques modelisees par des coques minces

Authors

  • Mohamed Beldi Universite de Technologie de Compiegne LG2mS, UPRESA6066 du CNRS, BP 20529 F-60205 Compiegne cedex and France Acoustique 11, rue du 8 Mai 1945 F-60350 Berneuil
  • Catherine Knopf-Lenoir Universite de Technologie de Compiegne LG2mS, UPRESA6066 du CNRS, BP 20529 F-60205 Compiegne cedex

Keywords:

finite element method, thin shell, sensitivity analysis,, thickness optimization, mass minimization, Von Mises stress minimization

Abstract

This paper is concerned with a numerical method to solve some thin shell optimization problems. The junctions to minimize or to limit are the mass and the Von Mises stress. Sensitivity analysis is developed in the discrete case. Numerical results are presented for an aeronautic piece (gear case) of complex shape.

 

Downloads

Download data is not yet available.

References

[ARM 78] ARMAND J.L., LODIER B., «Optimal Design of Bending Elements »,

Int. 1. for Num. Meth. in Eng., Vol. 13, 373-384, 1978.

[BAN 81] BANICHUK N. V. « Design of Plates for Minimum Deflection and

Stress », in Haug E.J. and Cea 1. (Eds), Optimization of Distributed Parameter

Structures, Vol 1, Sijthoff and Noordhoff, Alphen aan der Rijn, The Netherlands,

-361, 1981.

[BAT 80] BATOZ J. L. et a!., « A study of three-node triangular plate bending

elements», Int. 1. for Numerical Meth. in Eng., vol 15, p. 1771-1812, 1980.

[BEL 88] BELDI M., Optimisation de Ia loi d'epaisseur des structures minces, These

de doctorat, U.T.C., 1988.

[BEL 97] BELDI M. et KNOPF-LENOIR C., « Analyse de sensibilite des coques

epaisses », Proposition de publication a Ia Revue europeenne des elements finis,

[BRA 86] BRAIBANT V., FLEURY C., « Application of Structural Synthesis

Techniques », Computer Aided Design, Structural and Mechanical Systems, Proc.

NATO ASI, Troia, Portugal, 29-53, Vol 2, 1986 ,

[ESP 85] ESPING B. «The OASIS Structural Optimization System», Report W

-3, Royal Institute of Technology, Dept. Of Aeronautical Structures and Materials,

Stockholm, Sweden.

[FLE 78] FLEURY C., GERADIN M., «Optimality Criteria and Mathematical

Programming in Structural Weight Design», Comp. and Struct. 8, 7-18, 1978.

[FLE 83] FLEURY C., SANDER G., « Dual Methods for optimizing Finite

Elements Flexural Systems », Comput. Meth. in Appl. Mech. And Eng., Vol 37,

-275 (1983)

HAF 80] HAFTKA R.T., PRASAD B., «Optimum Design of the Sides of a Railroad

Car », Eng. Struct., Vol. 2, Oct 1980.

[HAU 80] HAUG E.J. and ROUSSELET B. « Design Sensitivity Analysis in

Structural Mechanics - I Static Response Variations », J. Struct. Mech. 8, 17-41,

[LIO 68] LIONS 1.L., Controle optimal des systemes gouvernes par des equations

aux derivees partielles, Dunod ed., 1968.

[MRO 72] MROZ Z. « Multiparameter Optimal Design of Plates and Shells», 1.

Struct. Mech, l, 3, pp 371-392, 1972

[PET 82] PETIAU C., LECINA G. « Optimisation des structures d'avion », 1. de

Meca. Theorique et Appliquee, Vol. 1, n°2, pp 291-309, 1982

[POW 78] POWELL M.J.D., « Algorithms for nonlinear constraints that use

Lagrangian Function», Math. Prog., 14, p. 224-248, 1978.

[SCH 74] SCHMIT L. A., FARSHI B. « Some Approximation Concepts for

Structural Synthesis », J. AIAA 12, 692-699, 1974.

[STO 85] STOER J., « Principles of sequential quadratic programming methods for

solving nonlinear programs », NATO ASI series, F15, Comp. Math. Prog., K.

Schittkowsky ed., Springer-Verlag, 1985.

[SV A 81] SV ANBERG K., « Optimization of geometry in truss design », Comp.

Math. in Appl. MechK. and Eng., 28, p. 63-80, 1981.

Downloads

Published

1997-02-24

How to Cite

Beldi, M. ., & Knopf-Lenoir, C. . (1997). Conception optimale des pieces mecaniques modelisees par des coques minces. European Journal of Computational Mechanics, 6(4), 451–470. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3437

Issue

Section

Original Article