Un schema Volumes-Finis pour Ia simulation d'un modele bi-ftuide d' ecoulements diphasiques compressibles gaz-solide

Authors

  • Laure Combe IMFT Avenue du Professeur Camille Soula, 31000 Toulouse and EDF, Direction des Etudes et Recherches Departement Laboratoire National d'Hydraulique 6, quai Watier, 78400 Chatou
  • Jean-Marc Herard EDF, Direction des Etudes et Recherches Departement Laboratoire National d'Hydraulique 6, quai Watier, 78400 Chatou

Keywords:

two-phase flows, two-fluid model, finite volumes, fractional step method, approximate Riemann solver, non conservative hyperbolic systems, maximum principle

Abstract

A Finite- Volume scheme which enables to compute compressible gas-solid twophase flows using the two-fluid approach is presented herein The time-dependent scheme is implemented on unstructured meshes. The fractional step method is such that the maximum principle for the volumetric fraction is fulfilled. Some two-dimensional test cases including shocks and rarefaction waves within both phases are described.

 

Downloads

Download data is not yet available.

References

[BAL 95] BALZER G., BOELLE A., SIMONIN 0., «Eulerian gas-solid flow modelling

of dense fluidized bed~, Proceedings of the International Symposium

of the Eng. Foundation Fluidization VIII, Tours, 14-19 mai, 1995.

[BAR 91] BARAILLE R., Developpement de schemas numeriques adaptes a l'hydrodynamique,

These de doctorat de l'universite de Bordeaux I, 13 decembre

(BAR 92] BARAILLE R., BOURDIN G., DUBOIS F., LEROUX A.Y., «Une

version a pas fractionnaires du schema de Godunov pour l 'hydrodynamique

», C. R. A cad. Sci. Paris, 1992, t 314, Serie I, p. 147-152.

[BOE 95] BOELLE A., BALZER G., SIMONIN 0., «Second-order prediction of

the particle-phase stress tensor of inelastic spheres in simple shear dense

suspensions», Proceedings of ASME, ASME FED Vol. 228, p. 9-18, 1995.

[BRU 96] BRUN G., HERARD J.M., LEAL DE SOUSA L., UHLMANN M.,

«Numerical modelling of turbulent compressible flows using second order

models», Proceedings of the first International Symposium on Finite

Volumes for Complex Applications, Rouen, France, july 15-18, 1996, pp

-346.

[BUF 93a] BUFFARD T., Analyse de quelques methodes de volumes finis non structures

pour la resolution des equations d'Euler, These de doctorat de

l'universite Paris VI, France, 1993.

[BUF 93b] BUFFARD T., HERARD J.M., «Un schema conservatif a pas fractionnaires

pour resoudre les equations d'Euler en maillage non structure»,

C. R. Acad. Sci. Paris, 1993, t 316, Serie II, p. 575-582.

[BUF 96] BUFFARD T., GALLOUET T., HERARD J.M., Schema VFROE en

variables caracteristiques - Principe de base et application aux gaz reels,

Rapport EDF HE41/96/41/A.

[CHA 92] CHAMPIER S., GALLOUET T., «Convergence d'un schema decentre

amont sur un maillage triangulaire pour un probleme hyperbolique lineaire

», Af AN, 1992, Vol 26(7), p. 835-853.

[CHA 93] CHAMPIER S., GALLOUET T., HERBIN R., «Convergence of an upstream

finite volume scheme on a triangular mesh for a nonlinear hyperbolic

equation», Numer. Math., 1993, Vol66, p. 139-157.

(COM 95a] COMBE L., Solveur de Godunov pour les equations d'Euler isentropique,

Rapport EDF HE41/95/008/ A.

(COM 95b] COMBE L., HERARD J.M., Modelisation numerique des ecoulements

diphasiques gaz-solide (Modeles bi-fiuides)- Rapport d'avancement 1,

Rapport EDF HE41/95/043/ A.

(COM 96a] COMBE L., FABRE J., HERARD J.M., SIMONIN 0., «On the numerical

preservation of the maximum principle for gas-solid flows», Proceedings

of A.S.M.E. Fluids Engineering, Summer Meeting, San Diego,

California, July 7-11, 1996. ASME FED vol.236, p. 181-188.

[COM 96b] COMBE L., HERARD J.M., Principe du maximum pour un modele

diphasique gaz-solide a trois equations, Rapport EDF HE41/96/045/ A.

[COM 97] COMBE L., These de doctorat de l'lnstitut National Polytechnique de

Toulouse, France, en preparation.

[COQ 96] COQUEL F., EL AMINE K., GODLEWSKI E., PERTHAME B.,

RASCLE P., Numerical method using upwind schemes for the resolution

of two-phase flows, Publications du laboratoire d'analyse numerique,

Universite Paris VI, juillet 1996, R 96014.

[DAL 95] DAL MASO G., LE FLOCH P., MURAT F., «Definition and weak stability

of nonconservative products,., J. Math. Pures Appl., Vol 74, p.

-548, 1995.

[ECO 96]

[EYM 97]

(GAL 92]

[GAL 96a]

[GAL 96b]

[GAY 97]

[GID 93]

[GOD 92]

ECOLE CEA-EDF-INRIA, Problemes non lineaires appliques, Methodes

numeriques pour les ecoulements diphasiques, INRIA Rocquencourt, 18-

novembre 1996.

EYMARD R., GALLOUET T., HERBIN R., Finite volume methods, En

preparation pour Handbook of Numerical Analysis, Editions P.G. Ciarlet

et J.L. Lions, North Holland.

GALLOUET T., An introduction to finite volume methods, Ecoie CEAEDF-

INRIA, 1992.

GALLOUET T., «Rough schemes for complex hyperbolic systems,., Proceedings

of the first International Symposium on Finite Volumes for

Complex Applications, Rouen, France, july 15-18, 1996, Ed. Hermes, pp

-14.

GALLOUET T., MASELLA J.M., «Un schema de Godunov approche,.,

C. R. Acad. Sci. Paris, 1996, t. 323, Serie I, p. 77-84.

GAVRILYUK S.L., FABRE J., «Lagrangian coordinates for a drift-flux

model of a gas-liquid mixture,., a paraitre dans Int. J. of Multiphase

Flow.

GIDASPOW D., Multiphase flow and fluidization, Academic Press, 1993.

GODLEWSKI E., RAVIART P.A., Hyperbolic systems of conservation

laws, coli. SMA! n°3/4, 1992, Ellipses.

[GODU 59] GODUNOV S.K., «A difference method for numerical calculation of discontinuous

equations of hydrodynamics,., Math. Sb., 47(89}, p. 271-300,

[GOL 96] GOLDSTEIN A., SHAPIRO M., GUTFINGER C., «Mechanics of collisional

motion of granular materials. Part 3. Self-similar shock wave

propagation,., J. Fluid Mech., 1996, Vol316, p. 29-51.

[HER 94] HERARD J.M., COMBE L., Un systeme diphasique bi-fluide pour

Ia modelisation des ecoulements gaz-solide, Coli. notes internes DER

NB00077.

[HER 95] HERARD J.M., Solveur de Riemann approche pour un systeme hyperbolique

non conservatif issu de Ia turbulence compressible, Rapport EDF

HE41/95/009/ A.

[HERB 95] HERBIN R., «An error estimate for a finite volume scheme for a

diffusion-convection problem on a triangular mesh,., Numer. Meth. Part.

Diff. Equations, Vol. 11, 1995.

[ISH 75] ISHII M., Thermo-fluid dynamic theory of two-phase flow, Collection de

Ia Direction des Etudes et Recherches d'Electricite de France, Eyrolles,

[KUM 93] KUMBARO A., Modelisation, analyse mathematique et numerique des

modeles bifluides d'ecoulement diphasique, These de doctorat de l'universite

Paris XI, France, 1993.

[LAX 57] LAX P.D., «Hyperbolic systems of conservation laws Ih, Commun. Pure

Appl. Math., 1957, Vol X, p. 537-566.

[LAX 72] LAX P.D., «Hyperbolic systems of conservation laws and the mathematical

theory of the schock wawes*, C. B. M.S. Regional Conference Series

in Applied Mathematics 11, SIAM, Philadelphia, 1972.

[LEF 88] LE FLOCH P., «Entropy weak solutions to nonlinear hyperbolic systems

under nonconservative form», Commun. Partial Diff. Equations, 1988,

Vol 13(6), p. 669-727.

[LEF 92] LE FLOCH P., LIU T.P., Existence theory for nonlinear hyperbolic systems

in non-conservative form, Publication Ecole Polytechnique-Centre

de Mathematiques Appliquees, jan. 1992, n° 254.

[MAS 96] MASELLA J.M., FAILLE 1., GALLOUET T., •A rough Godunov

scheme*, Soumis a publication.

[MAS 97] MASELLA J.M., Quelques methodes numeriques pour les ecoulements

diphasiques bi-fluides en conduites petrolieres, These de doctorat de

l'universite Paris VI, France, 1997.

[RAY 95] RAVIART P.A., SAINSAULIEU L., «A non conservative hyperbolic system

modeling spray dynamics. Part 1 : Solution of the Riemann problem*,

Math. Models Methods Appl. Sciences, 1995.

[ROE 81] ROE P.L., «Approximate Riemann solvers, parameter vectors, and difference

schemes*, J. Comput. Phys., 1981, Vol 43, p. 357-372.

[SAl 91] SAINSAULIEU L., «Ondes progressives solutions de systemes convectifsdiffusifs

et systemes hyperboliques non conservatifs*, C. R. Acad. Sci.

Paris, 1991, t. 312, Serie I, p. 491-494.

[SAl 92] SAINSAULIEU L., «Finite volume approximation of two phase-fluid

flows based on an approximate Roe-type Riemann solveP, J. Comput.

Phys., 1995, Vol 121, p. 1-28.

[SAl 95] SAINSAULIEU L., Contribution a Ia modelisation mathematique et numerique

des ecoulements diphasiques constitues d'un nuage de particules

dans un ecoulement de gaz, These d'habilitation, 20/01/95, Paris VI,

France.

(SAU 94] SAUREL R., FORESTIER A., VEYRET D., LORAUD J.C., «A finite

volume scheme for two-phase compressible flows*, Int. J. Numer. Methods

Fluids, 1994, Vol 18, p. 803-819.

(SMO 83] SMOLLER J., Schock waves and reaction-diffusion equations, SpringerVerlag,

[TOU 96] TOUMI 1., KUMBARO A., «An approximate linearized Riemann solver

for a two-fluid modeh, J. Comput. Phys., 1996, Vol 124, p. 286-300.

Downloads

Published

1997-02-19

How to Cite

Combe, L. ., & Herard, J.-M. . (1997). Un schema Volumes-Finis pour Ia simulation d’un modele bi-ftuide d’ ecoulements diphasiques compressibles gaz-solide. European Journal of Computational Mechanics, 6(2), 197–231. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3453

Issue

Section

Original Article