Shape optimization in computational fluid dynamics
Keywords:
shape optimization, Computational Fluid dynamics, optimal control theory, automatic differentiationAbstract
This paper is devoted to shape optimization for Partial Differential Equations ( PDE) systems related to Computational Fluid Dynamics (CFD ). Numerical approximation of the PDE's relies on schemes satisfying discrete maximum principles and using unstructured meshes generated from the shape parameters. The theory of control is applied to the discrete design problem with the resulting constrained optimization problem solved by gradient based algorithms. An automatic differentiation procedure for Fortran codes is extensively used to carry out the CFD sensitivity analysis.
Downloads
References
(1] T.J. BARTH and S.W. LINTON.- An Unstructured Mesh Newton Solver
for Compressible Fluid Flow and Its Parallel Implementation, AIAA paper
-0221, 33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995.
(2) B. BERDE and M. BOREL.- Moment Approach for the Navier-Stokes
Equations, AIAA paper 95-1663, 12th Computational Fluid Dynamics,
June 19-22, 1995.
(3] A. DERVIEUX, L. FEZOUI, M.P. LECLERCQ and B. STOUFFLET.A
general upwind formulation for compressible flows on multi-element
meshes, in Numerical Methods for Fluid Dynamics 4, M.J. Baines and
K.W. Morton eds., Oxford Science Publications, 1993.
(4] J. CEA.- Numerical Methods of Shape Optimal Design. in Optimization
of Distributed Parameter Structures {eds. E.J. Haug and J. Cea) Sijthoff
and Noordhoff, Alphen aan den Rijn, The Netherlands, 1981.
(5] S. CHAMPIER., T. GALLOUET and R. HERBIN.- Convergence of an
upstream finite volume scheme on a triangular mesh for a nonlinear hyperbolic
equation, preprint.
(6] R. STRUIJS, P.L. ROE and H. DECONINCK.- Fluctuation splitting
schemes for the 2D Euler Equations, Von Karman Institute LS 1991-01
in CFD, 1991.
(7] A. DERVIEUX, J.M. MALE, N. MARCO, J. PERIAUX, B. STOUFFLET
and H.Q. CHEN.- Some Recent Advances in Optimal Shape Design for
Aeronautical Flows, in Computational Fluid Dynamics '94, J. Wiley, 1994.
(8] J. REUTHER anf A. JAMESON.- Aerodynamic Shape Optimization of
Wing and Wing-Body Configurations Using Control Theory, AIAA paper
-0123, 33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995.
(9] A. JAMESON.- Numerical Solution of the Euler Equations for Compressible
Inviscid Fluids. in Numerical Methods for the Euler equations in Fluid
Dynamics, ed. by F. Angrand, A. Dervieux, J.A. Desideri and R. Glowinski
(SIAM, Philadelphia), 1985.
(10] J-L. LIONS.- Controle optimal des systemes gouvernes par des equations
aux derivees partielles, Dunod, Gauthier-Villars, Paris 1968.
(11] N. ROSTAING, S. DALMAS and A. GALLIGO.- Automatic Differentiation
in Odyssee. Tellus, (45A):358-368, 1993.
(12] J. PERAIRE, J. PEIRO, L. FORMAGGIA, K. MORGAN and O.C.
ZIENKIEWICZ.- Finite Element Euler Computations in Three Dimensions,
Int. J. Numer. Methods Eng. 26, 2135-2159, 1988.
B. PERTHAME, Y. QIU and B. STOUFFLET.- Sur la convergence des
schemas fluctuation-splitting pour !'advection et leur utilisation en dynamique
des gaz, C.R. Academie des Sciences Paris, t.319, Serie I, 283-288,
0. PIRONNEAU.- Optimal Shape Design for Elliptic Systems, SpringerVerlag,
New-York, 1984.
E. POLAK.- Computational Methods in Optimization : a unified approach.
Mathematics in Science and Engineering. Vol. 77, 1971.
Q.V. DINH, G. ROGE, C. SEVIN and B. STOUFFLET.- Contr6le
a petit nombre de parametres en aerodynamique, 32eme colloque
d'aerodynamique appliquee, Ecole Centrale de Lyon, 25-27 Mars 1996.
F. CHALOT, M. MALLET and M. RAVACHOL.- A Comprehensive Finite
Element Navier-Stokes Solver for Low and High-Speed Aircraft Design,
AIAA paper 94-0814, 32nd AIAA Aerospace Sciences Meeting and
Exhibit, Reno, 1994.
(18] B. VAN LEER.- Flux Vector Splitting for the Euler Equations, Lecture
Notes in Physics, vol. 170. page 405-512, 1982. ·
Q.V. DINH; B. STOUFFLET and A. VOSSINIS.- ICIAM Conference,
Philadelphia, 1993.