Shape optimization in computational fluid dynamics

Authors

  • Quang Vinh Dinh Dassault Aviation 78, quai Marcel Dassault, 92214 Saint-Cloud
  • Gilbert Roge Dassault Aviation 78, quai Marcel Dassault, 92214 Saint-Cloud
  • Cyrille Sevin Dassault Aviation 78, quai Marcel Dassault, 92214 Saint-Cloud
  • Bruno Stoumet Dassault Aviation 78, quai Marcel Dassault, 92214 Saint-Cloud

Keywords:

shape optimization, Computational Fluid dynamics, optimal control theory, automatic differentiation

Abstract

This paper is devoted to shape optimization for Partial Differential Equations ( PDE) systems related to Computational Fluid Dynamics (CFD ). Numerical approximation of the PDE's relies on schemes satisfying discrete maximum principles and using unstructured meshes generated from the shape parameters. The theory of control is applied to the discrete design problem with the resulting constrained optimization problem solved by gradient based algorithms. An automatic differentiation procedure for Fortran codes is extensively used to carry out the CFD sensitivity analysis.

 

Downloads

Download data is not yet available.

References

(1] T.J. BARTH and S.W. LINTON.- An Unstructured Mesh Newton Solver

for Compressible Fluid Flow and Its Parallel Implementation, AIAA paper

-0221, 33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995.

(2) B. BERDE and M. BOREL.- Moment Approach for the Navier-Stokes

Equations, AIAA paper 95-1663, 12th Computational Fluid Dynamics,

June 19-22, 1995.

(3] A. DERVIEUX, L. FEZOUI, M.P. LECLERCQ and B. STOUFFLET.A

general upwind formulation for compressible flows on multi-element

meshes, in Numerical Methods for Fluid Dynamics 4, M.J. Baines and

K.W. Morton eds., Oxford Science Publications, 1993.

(4] J. CEA.- Numerical Methods of Shape Optimal Design. in Optimization

of Distributed Parameter Structures {eds. E.J. Haug and J. Cea) Sijthoff

and Noordhoff, Alphen aan den Rijn, The Netherlands, 1981.

(5] S. CHAMPIER., T. GALLOUET and R. HERBIN.- Convergence of an

upstream finite volume scheme on a triangular mesh for a nonlinear hyperbolic

equation, preprint.

(6] R. STRUIJS, P.L. ROE and H. DECONINCK.- Fluctuation splitting

schemes for the 2D Euler Equations, Von Karman Institute LS 1991-01

in CFD, 1991.

(7] A. DERVIEUX, J.M. MALE, N. MARCO, J. PERIAUX, B. STOUFFLET

and H.Q. CHEN.- Some Recent Advances in Optimal Shape Design for

Aeronautical Flows, in Computational Fluid Dynamics '94, J. Wiley, 1994.

(8] J. REUTHER anf A. JAMESON.- Aerodynamic Shape Optimization of

Wing and Wing-Body Configurations Using Control Theory, AIAA paper

-0123, 33rd Aerospace Sciences Meeting and Exhibit, Reno, 1995.

(9] A. JAMESON.- Numerical Solution of the Euler Equations for Compressible

Inviscid Fluids. in Numerical Methods for the Euler equations in Fluid

Dynamics, ed. by F. Angrand, A. Dervieux, J.A. Desideri and R. Glowinski

(SIAM, Philadelphia), 1985.

(10] J-L. LIONS.- Controle optimal des systemes gouvernes par des equations

aux derivees partielles, Dunod, Gauthier-Villars, Paris 1968.

(11] N. ROSTAING, S. DALMAS and A. GALLIGO.- Automatic Differentiation

in Odyssee. Tellus, (45A):358-368, 1993.

(12] J. PERAIRE, J. PEIRO, L. FORMAGGIA, K. MORGAN and O.C.

ZIENKIEWICZ.- Finite Element Euler Computations in Three Dimensions,

Int. J. Numer. Methods Eng. 26, 2135-2159, 1988.

B. PERTHAME, Y. QIU and B. STOUFFLET.- Sur la convergence des

schemas fluctuation-splitting pour !'advection et leur utilisation en dynamique

des gaz, C.R. Academie des Sciences Paris, t.319, Serie I, 283-288,

0. PIRONNEAU.- Optimal Shape Design for Elliptic Systems, SpringerVerlag,

New-York, 1984.

E. POLAK.- Computational Methods in Optimization : a unified approach.

Mathematics in Science and Engineering. Vol. 77, 1971.

Q.V. DINH, G. ROGE, C. SEVIN and B. STOUFFLET.- Contr6le

a petit nombre de parametres en aerodynamique, 32eme colloque

d'aerodynamique appliquee, Ecole Centrale de Lyon, 25-27 Mars 1996.

F. CHALOT, M. MALLET and M. RAVACHOL.- A Comprehensive Finite

Element Navier-Stokes Solver for Low and High-Speed Aircraft Design,

AIAA paper 94-0814, 32nd AIAA Aerospace Sciences Meeting and

Exhibit, Reno, 1994.

(18] B. VAN LEER.- Flux Vector Splitting for the Euler Equations, Lecture

Notes in Physics, vol. 170. page 405-512, 1982. ·

Q.V. DINH; B. STOUFFLET and A. VOSSINIS.- ICIAM Conference,

Philadelphia, 1993.

Downloads

Published

1996-06-20

How to Cite

Dinh, Q. V. ., Roge, G. ., Sevin, C. ., & Stoumet, B. . (1996). Shape optimization in computational fluid dynamics. European Journal of Computational Mechanics, 5(5-6), 569–594. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3485

Issue

Section

Original Article