A finite rotation shell theory with application to composite structures

Authors

  • Friedrich Gruttmann /nstitut fiir Baustatik Universitiit Karlsruhe Kaiserstraj3e 12 76131 Karlsruhe, Germany
  • Sven Klinkl /nstitut fiir Baustatik Universitiit Karlsruhe Kaiserstraj3e 12 76131 Karlsruhe, Germany
  • Werner Wagner /nstitut fiir Baustatik Universitiit Karlsruhe Kaiserstraj3e 12 76131 Karlsruhe, Germany

Keywords:

nonlinear shell formulation, finite rotations, composite material

Abstract

In this paper we derive a finite element formulation for geometrical nonlinear shell structures. The formulation bases on a direct introduction of the isoparametric finite element formulation into the shell equations. The element allows the occurence of finite rotations which are described by a rotation tensor. A layerwise linear elastic material model for composites is chosen. The consistent linearization of all equations leads to quadratic convergence behaviour within the nonlinear solution procedure. Examples show the applicability and effectivity of the developed element.

 

Downloads

Download data is not yet available.

References

(SIM90) Simo, J. C., Fox, D.D., Rifai, M. S., On a Stress Resultant Geometrically

Exact Shell Model, Camp. Meth. Appl. Mech. Engng. (Part I: 72 267-304 (1989),

Part II: 73 53-92 (1989), Part III: 79 21-70 (1990), Part VII:108 319-339 (1993))

(WAS93] Wagner W., Stein E., A New Finite Element Formulation for Cylindrical

Shells of Composite Material, Composites Engineering, 3, 899-910 {1993)

(RAM77] Ramm, E., A Plate/Shell Element for Large Deflections and Rotations,

US-Germany Symp. on 'Formulations and Computational Algorithms in Finite

Element Analysi8', M.I.T.-Press, Boston, 264-293 (1977)

(RAM76] Ramm, E., Geometrisch nichtlineare Elastostatik und Finite Elemente, Report

No. 76-2, Inst. f. Baustatik Universitat Stuttgart 1976

(TSA88] Tsai, W. S., Composite$ Design, Think Composites, Dayton (1988)

(BUR92] Buchter N., Ramm E., Shell thP.ory versus degeneration - A comparison

in large rotation finite element analysis , Int. J. Num. Meth. Engng. 34 39-59

(1992)

(PIE77] Pietraszkiewicz, W., Introduction to the Non-linear Theory of Shells, Techn.

Rep. lnst. f. Mechanik, Nr. 10, Ruhr-Universitat Bochum (1977)

(BAD85] Bathe, K.J., Dvorkin, E.N., A 4-Node Plate Bending Element based on

Mindlin/Reissner Theory and a Mixed Interpolation, Int. J. Num. Meth. Engng.

367-383 (1985)

(DVB84] Dvorkin, E.N., Bathe,K.J., A Continuum Mechanics based Four-Node Shell

Element for General Nonlinear Analsysis, Engng. Camp. 1 77-88 (1984)

(ZIT89) Zienkiewicz, 0. C. and Taylor R. L., The Finite Element Method, Vol.l-2, 4.

Edn. Me Graw-Hill, London {1989/1991)

(RAM86] Ramm, E., Matzenmiller, A., Large deformation shell analysis based on

the degeneration concept, Finite Element methods for Plate and Shell Structures

(Eds. Hughes,T.J.R., Hinton, E.) Pineridge Press, Swansea 365-393 (1986)

(STM89] Stander,N., Matzenmiller, A., R.amm, E., An assessment of Assumed Strain

Methods in Finite Rotation Shell Analysis, Engng. Comp. 6 57-66 (1989)

[IBR95] lbrahimbegovic A., On Assumed Shear Strain in Finite Rotation Shell Analysis,

Engng. Comp. 11 in press {1995)

[TAB82] Taber, L.A., Large Deflection of a Fluid-Filled Spherical Shell under a Point

Load, J. Appl. Mech., Tran.s. ASME Ser. E, 39, 121-128 (1982)

(WAG90] Wagner, W., A Finite Element Model for Nonlinear Shells of Revolution

with Finite Rotations, Int. J. Num. Jlieth. Engng. 29 1455-1471 {1990)

[MCH85] McNeal, R. H., Harder, R. 1., A proposed standard set of problems to test

finite element accuracy. J. of Finite Elements in Analysis fj Design 1 3-20 (1985)

(HUL81] Hughes, T.J.R., Liu, W.K., Nonlinear Finite Element Analysis of Shells.

Camp. Meth. Appl. Mech. Engng. Part I: Three-dimensional shells, 26 331-362

(1981) Part II: Two-dimensional shells, 27 167-181 (1981)

(SPH86] Stanley, G. M., Park, K.C., Hughes, T.J.R., Continuum-based resultant

shell elements, Finite Element methods for Plate and Shell Structures (Eds.

Hughes, T.J.R., Hinton, E.) Pineridge Press, Swansea, 1-45 (1986)

[GSW89) Gruttmann, F., Stein, E., Wriggers, P., Theory and Numerics of Thin Elastic

Shells with Finite Rotations, lng. Archiv 59 54-67 (1989)

(IBR94] lbrahimbegovic A., Frey F., Stress Resultant Geometrically Nonlinear Shell

Theory With Drilling Rotations, Comp. Meth. Appl. Mech. Engng. (Part I: 118

-284 (1994), Part II: 118 285-308 (1995))

[PAR91) Parisch, H., An Investigation of a Finite Rotation Four Node Shell Element,

Int. Num. Meth. Engng. 31 127-150 (1991)

[GEB90] Gebhardt H., Finite Element K onzepte fur schubelastische Schalen mit

endlichen Drehungen, Report No. 10, lnst. f. Baustatik, Universitii.t Karlsruhe,

[SCH86) Schaap, H., Oberfiii.chenorientierte Schalentheorien endlicher Verschiebungen,

Ing.Archiv 56 427-437 (1986)

[BAD90] B~ar, Y., Ding, Y., Theory and Finite-Element Formulation for Shell

Structures undergoing Finite Rotations, Advances in the Theory of Plates and

Shells (Eds. Voyiadjis, G.Z., Karamanlidis, D.) Elsevier Science Publishers, Amsterdam,

-26 (1990)

[BDM92) B~ar, Y., Ding, Y., Menzel, W., Montag, U., Finite Rotation Shell Elements

via Finite-Rotation Shell Theories, Statik und Dynamik im konstruktiven

lngenieurbau, Festschrift Wilfried B. Krii.tzig, 1992

[DOR90] Dorninger, K., Rammerstorfer, F.G., A Layered Composite Shell Element

for Elastic and Thermoelastic Stress and Stability Analysis at Large Deformations,

Int. Num. Meth. Engng. 30 833-858 (1990)

[RCH85) Reddy, J.N., Chandrashekhara, K., Nonlinear Analysis of Laminated Shells

including Transverse Shear Strains, AIAA Journal23 440-441 (1985)

[WAW88] Wagner, W., Wriggers, P., A Simple Method for the Calculation of Postcritical

Branches, Engineering Computations, 5 103-109 (1988)

[WRG93] Wriggers, P., Gruttmann, F., Thin Shells with Finite Rotations formulated

in Biot-Stresses: Theory and Finite Element Formulation Int. Num. Meth.

Engng., 36, 2049-2071, 1993

[WRG90) Wriggers P., Gruttmann F., Large Deformations of Thin Shells: Theory and

Finite-Element-Discretization, Analytical and Computational Models of Shells

(Eds. Noor, A., Belytschko T., Sima, J. C.) ASME CED-Vol. 3, 135-159 (1990)

[PIJ87) Pinsky, P. M., Jang, J., A C0-elastoplastic shell element based on assumed

covariant strain interpolations, NUMETA 1987, Numerical Methods in Engineering:

Theory and Applications (Eds. Pande, G.N., Middleton, J.) Pineridge Press,

Swansea (1987)

[LAM90) Lammering, R., Structural Analysis and Optimization of a Propfan-Blade

by use of the Finite Element Method, Engineering Computations 7 327-337

(1990)

[HUG87) Hughes, T. J. R., The Finite Element Method, Prentice-Hall Inc., Englewood

Cliffs, New Jersey (1987)

Downloads

Published

1995-06-24

How to Cite

Gruttmann, F. ., Klinkl, S. ., & Wagner, W. . (1995). A finite rotation shell theory with application to composite structures. European Journal of Computational Mechanics, 4(5-6), 597–631. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3543

Issue

Section

Original Article

Most read articles by the same author(s)