Approximations par elements finis d 'un modele de coques minces geometriquement exact
Keywords:
nonlinear shells, geometrically exact models, large displacements, cartesian basis, hyperelasticity, finite elements, Argyris triangle, DKT triangleAbstract
The purpose of this work is to develop finite element models for geometrically exact nonlinear shells. The originality of our approach is to work in a fixed cartesian basis. After a brief introduction of the shell model, the paper presents two finite elements approximations specially developed for this problem. The first uses conforming Argyris triangles, the second develops nonlinear DKT triangles. Both models use the final position of the middle surface and its derivatives as degrees of freedom. They are then validated by several numerical tests.
Downloads
References
(ARG 68] ARGYRIS J.H., FRIED I., SCHARPF D.W. (1968]: The TUBA family
of plate elements for the matrix displacement method, Aero. J. Royal Aeronaut.
Soc. 72, 701-709.
[BAT 83] BATOZ J.L., GEOFFROY P. [1983): Evaluution d'un element fini triangulaire
pour /'analyse non lineaire stalique de cogues minces, Rapport DRET /UTC
n° 81/032.
[BER 94] BERN ADOU M. [1994] : Methodes d'Elements Finis pour des Pmblemes
de Cogues Minces, Collection RMA, Masson, Paris
[CAR 90] CARRIVE M. [1990]: Modelisation numerigue de cogues minces a /'aide
d'elements finis de c/asse C1
, rapport de stage de D.E.A. Universite de DauphineI.
N.R.I.A.
[CAR 95] CARRIVE M. [1995]: Modelisation intrinsegue et analyse numerigue d'un
probleme de coque mince en gmnds deplacements. These de doct.orat de l'universite
de Paris IX.
[CIA 87] CIARLET P.G. [1987]: The Finite Element Method for Elliptic Problems,
North-Holland, Amsterdam.
[COS 09] COSSERAT E. COSSERAT F. [1909): Theor·ie des corps defomwbles,
Traite de Physique, Hermann, Paris.
[CRI 90] CRISFIELD M.A. [1990] : Nonlinear Finite Element Analysis of Solids
and Structures. John Wiley and Sons, Chichester. New York. Brisbane. Toronto.
Singapore.
[DEST 90) DESTUYNDER P. [1990] : Modelisation des coques minces elastiques.
Masson
[DHA 70) DIIATT G. [1970] : An efficient triangular shell element, AIAA J ., Vol.8,
n° 11 Vol.l 36p.
[IBRA 94) IBRAHIMBEGOVIC A. [1994) : Stress resultant geometrically nonlinear
shell theory with drilling rotations - Part II : Computational aspects, Comp.
Methods Appl. Mech. Eng., 118, pp. 285-305.
[KOI 66] KOlTER W.T. [1966] : On the Non-linear Theory of Thin Elastic Shells,
Proceedings Koninklijke Nederlandse Akademie van Wetenschappen, series B, 69,
pp. 1-54.
[LE TAL 94) LE TALLEC P. [1994) : Numer·ical Methods for Nonlinear· Threedimensional
Elasticity. Handbook of Numerical Analysis, Vol III.
[LYN 75] LYNESS J.N., JESPERSEN D. [1975] : Modemte degr·ee symmetric
quadrature rules for the triangle, J. Inst. Math. Appl.,15, pp. 19-32.
[RII< 79] RIKS E. [1979] : An incremental approach to the solution of snapping and
buckling problems, Int. J. of Solids and Struc., Vol. 15, pp. 529-551.
[RII< 90) RIKS E. [1990] : Progr·ess in Collopse Anolyses. National Aerospace Laboratory
NLR, Amsterdam, The Netherlands.
[SAB 73] SABTR A.B. AND LOCK A.C. [1973] : The Application of Finite Elements
to the Large Defiexion Geomefl·ically Non-linear Behaviour of Cylind1·ical
Shells, in Variational Methods in Engineering, Ed. C. A. Brebbia and H. Tottenham,
Southampton University Press, 1973, pp. 7/66-7/75.
[SIM 89] SIMO J.C., Fox D.D., M.S. RIFAI [1989] : On a st1·ess ,·e.sultant geometrically
exact shell model, Part /: Formulation and optimal pammetl·izotion,
Comput. Methods Appl. Mech. Engrg. 72 267-304.
[SIM 90] SIMO J.C., FOX D.D., RIFAI M.S. [1990]: On a stress re.sultantgeometrically
exact shell model, Part III: Computational aspects of the nonlinear theory,
Comput. Methods Appl. Mech. Engrg. 79 21-70.