L'approximation quadratique et l'approche Taylor-Galerkin pour Ia modelisation des problemes transitoires d' advection -diffusion

Authors

  • Ali Khelifa Departement de genie civil Universite Laval Quebec, Canada Gl K 7P4
  • Jean-Loop Robert Departement de genie civil Universite Laval Quebec, Canada Gl K 7P4
  • Yvon Ouellet Departement de genie civil Universite Laval Quebec, Canada Gl K 7P4

Keywords:

advection-diffusion, splitting, Taylor-Galerkin, Fourier analysis, quadratic approximation

Abstract

This paper presents a numerical study of the behaviour of a model based on quadratic finite element approximation for transient advection-diffusion problem modelling. This model is based on a classical splitting technique, the advection-diffusion equation being split in time. The advection part is computed by a &-weighting Taylor-Galerkin approach. As to the diffusion equation, it's discretized by a standard &-weighting Galerkin scheme. For these two phases and based on Fourier method, an error analysis is proposed using quadratics elements. Results of this analysis show interesting investigations on the behaviour of numerical schemes based on high approximations. These investigations are confirmed by some representative numerical examples in one and two dimensions.

 

Downloads

Download data is not yet available.

References

[BAT 86] BATES S., CATHERS B., << Analysis of spurious eigenmodes in finite element

equations », Int. 1. Num. Methods Eng., 23, p. 1131-1143, 1986.

[CUL 80] CuLLEN M.J.P., MORTON K.W., <

and other methods >>, J. Comp. Phys., 34, p. 245-267, 1980.

[CUL 82) CULLEN M.J.P., <

in the solution of hyperbolic problems>>, 1. Comp. Plzys., 45, p. 221-245, 1982.

[DON 84] DoNEA J., <>, Int. 1.

Nwn. Methods Eng., vol. 20, p. 101-119, 1984.

[DON 84) DONEA J., GIULIANI S., LAVAL H., QuARTAPELLE L., << Time-accurate solution of

advection-diffusion problems >>, Comp. Methods Appl. Mech. Eng., 45, p. 123-146, 1984.

[DON 87) DONEA J., QuARTAPELLE L., SELMIN V., << An analysis of time discretization in

finite element solution of hyperbolic problems>>, 1. Comp. Plzy., 70, p. 463-499, 1987.

[DON 92] DoNEA J., QUARTAPELLE L., << An introdution to finite clement methods for

transient advection problems>>, Comp. Methods Appl. Mech. Eng., 95, p. 169-203,1992.

[FIS 79) FiscHER H. B., !MBERGER J., LIST E.J., KoH R.C.Y., BROOKS N.H., Mixing in Inland

and Coastal Waters, Academic Press, California, 1979.

[HIR 88) HIRSCH C., Numerical computation of internal and external flows, VI, eel., Wiley,

[KHE 92) KHELIFA A., Nouvelle approche en elements finis pour Ia modelisation du

phenomcne de transport permanent et non permanent, these de maitrise, universite Laval,

Quebec, Canada, 127 p., 1992.

[KHE 92] KHELIFA A., RoBERT J.-L, OUELLET Y., << Mode!isation numerique de !'advectiondiffusion

d'un polluant: modeles TG2q et TG3q >>, 8<' C01zgres nigional de /'Est du

Canada, ACRPEM, Quebec, Canada, 1992.

[KHE -] KHELirA A., OliELLET Y., << Analysis of evolutionary errors in quadratic finite

element approximation of hyperbolic problems», Int. J. Num. Methods Eng., (soumis).

[LAY 88) Laval H., « Taylor-Galcrkin solution of the time-dependent Navicr-Stokes

equations >>, Complltational Methods in Flow Analysis, Eels. NIKI H., KAWAHARA M.,

Okayama, University of Science, p. 414-421, 1988.

[LA V 90] LA VAL H., QUARTAPELLE L., << A fractional-step Taylor-Galcrkin method for

unsteady incompressible t1ows >>,Int. J. Num. Methods Flui., 11, p. 501-513, 1990.

[MAR 75] MARCH UK G.J., Methods of numerical mathematics, Springer, Berlin,l975.

[MOR 801 MoRTON K.W., PARROT! A.K., «Generalized Galerkin methods for first-order

hyperbolic equations >>, 1. Camp. Phy., 36. p. 249-270, 1980.

[PAR 90] PARK N.S., LIGCEIT J.A., «Taylor-least-squares finite clement for two dimensional

advection-diffusion problems >>, Int . ./. Nwn. Methods Flui., vol. II, p. 21-3K, 1990.

Downloads

Published

1995-02-28

How to Cite

Khelifa, A. ., Robert, J.-L. ., & Ouellet, Y. . (1995). L’approximation quadratique et l’approche Taylor-Galerkin pour Ia modelisation des problemes transitoires d’ advection -diffusion. European Journal of Computational Mechanics, 4(2), 127–158. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3577

Issue

Section

Original Article