Resolution numerique des equations de transport des tensions de Reynolds en ecoulements turbulents confines en rotation

Authors

  • Laurent Elena lnstitut de Mecanique des Fluides, 1M2 Unite Mixte 34 CNRS 1, rue Honnorat 13003 Marseille
  • Roland Schiestel lnstitut de Mecanique des Fluides, 1M2 Unite Mixte 34 CNRS 1, rue Honnorat 13003 Marseille

Keywords:

finite volumes, turbulence model, rotating flow, numerical stability, semistaggered grid

Abstract

A numerical procedure for Reynolds stress transport equations is presented using a semi staggered grid. The system formed by the stress equations is solved by point implicit method in order to preserve the so important couplings for numerical stability. The method is then applied for two different turbulence models to the prediction of the turbulent flow due to a rotating disk. The mean flow prediction are in good agreement with the experimental data, while for the turbulent field some discrepancies remain.

 

Downloads

Download data is not yet available.

References

[CAM 92] CAMBON C., JACQUIN L. & LUBRANO J.L., «Towards q new Reynolds stress

model for rotating turbulent flow», Phys. Fluids, Part A, 4, p. 812-824, 1992.

[CHE 84] CHEW J.W., «Prediction of flow in rotating disc systems using the k-e

turbulence model», ASME 84-GT-229, Gas Turbine Conference, Amsterdam, 1984.

[CHE 85] CHEW J.W., «Prediction of flow in rotating cavity with radial outflow using a

mixing length turbulence model», Proc. 4th Int. Conf on Numerical Methods in

Laminar and Turbulent Flow, Pineridge Press, p. 318, 1985.

[CHE 88] CHEW J.W., VAUGHAN C.M, «Numerical predictions of flow induced by an

enclosed rotating disc», ASME 88-GT-127, Gas Turbine and Aeroengine Congress,

Amsterdam, 1988.

[COU 81] COUSTEIX J., AUPOIX B., « Modelisation des equations aux tensions de

Reynolds dans un repere en rotation » La Recherche Aerospatiale, n° 4, p. 275-285,

[ELE 93] ELENA L., SCHIESTEL R., «Numerical prediction of the turbulent flow in rotorstator

systems», Engineering Turbulence Modelling and Measurements 2, Ed. W.

Rodi et F. Martelli, Elsevier Science Publishers, p. 765-774, 1993.

[FU 87] FU S., LAUNDER B.E., LESCHZINER M.A., «Modelling strongly swirling

recirculating jet flow with Reynolds stress transport closures», Vlth Int. Symp. on

Turbulent Shear Flow, Toulouse, Sept 7-9, 1987.

[HAN 76] HANJALIC K., LAUNDER B.E., «Contribution towards a Reynolds-stress closure

for low-Reynolds-number turbulence», J. Fluid Mech., vol. 74, part 4, p. 593-610,

[HAR 65] HARLOW F.H., WELCH J.E., «Numerical calculation of time-dependent viscous

incompressible flow», Phys. Fluids, 8, p. 2182, 1965.

[HUA 85] HUANG P.G., LESCHZINER M.A., «Stabilization of recirculating flow

computations performed with second moments closures and third order

discretization», Vth Int. Symp. on Turbulent Shear Flow, Cornell University, August

-9, 1985.

[lAC 91] IACOVIDES H., THEOPHANOPOULOS l.P., «Turbulence modeling of axisymmetric

flow inside rotating cavities», Int. J. Heat and Fluid Flow, vol. 12, n° 1, p. 2-11,

[lAC 93] IACOVIDES H., TOUMPANAKIS P., <

rotor-stator systems», Vth Int. Symp.on Refined Flow Modelling and Turbulence

Measurements, Paris, France, 7-10 sept. 1993.

[ITO 90] lTOH M., YAMADA Y., lMAO S., GONDA M., «Experiments on turbulent flow due

to an enclosed rotating disk», Engineering Turbulence Modelling and Experiments,

Elsevier Science Publishing Co, Inc - 1990.

[LAU 91] LAUNDER B.E., TSELEPIDAKIS D.P., «Direction in second-moment modelling of

near-wall turbulence», 29th Aerospace Sciences Meeting, Reno, USA, January 7-10

[MOR 87] MORSE A.P., «Numerical prediction of turbulent flow in rotationg cavities»,

ASME 87-GT-74, Gas Turbine conference and Exhibition, Anaheim, California, USA,

[OBI 89] OBI S., PERIC M., SCHEUERER G., «A finite-volume calculation procedure for

turbulent flows with second-order closure and colocated variable arrangement», Proc.

Vllth Int. Symp. on Turbulent Shear Flow, Stanford University, p. 17.4.1-17.4.6,

[PAT 80] PATANKAR S.V., Numerical heat transferandfluidjlow, Mac Graw Hill, 1980.

[POP 76] POPE S.B., WHITELAW J.H., «The calculation of near-wall wake flows», J. Fluid

Mech., vol. 73, part 1, p. 9-32, 1976.

[RHI 83] RHIE C.M., CHOW W.L., «A numerical study of the turbulent flow past an

isolated airfoil with trailing edge separation», AIAA J., vol. 21, p. 1525-1532,

[SCH 93] SCHIESTEL R., ELENA L., REZOUG T., «Numerical modelling of turbulent flow and

heat transfer in rotating cavities», Numerical Heat Transfer, Part. A, vol. 24, pp. 45-

, 1993.

[SHA 91] SHAO L., MICHARD M., BERTOGLIO J.P., «Effects of solid body rotation on the

transport of turbulence», V/1/th Int. Symp. on Turbulent Shear Flow, Munich,

Germany, 1991.

[SPE 87] SPEZIALE C.G., «Second-order closure models for rotating turbulent flows>>,

Quarterly of Applied Mathematics, vol. XLV, n° 4, p. 721-733, 1987.

[THI 90] THIART G.D., «Finite difference scheme for the numerical solution of fluid flow

and heat transfer problems on nonstaggered grids>>, Numerical Heat Transfer, Part. B,

vol. 17, p. 43-62, 1990.

Downloads

Published

1995-01-26

How to Cite

Elena, L. ., & Schiestel, R. . (1995). Resolution numerique des equations de transport des tensions de Reynolds en ecoulements turbulents confines en rotation. European Journal of Computational Mechanics, 4(1), 7–32. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3585

Issue

Section

Original Article