Methode de Lanczos par bloc appliquee aux problemes de vibration des structures amorties
Keywords:
Lanczos method, eigen frequencies and modes, damped structuresAbstract
The block Lanczos method for finding eigenvalues and eigenvectors and its application to the computation of the complex frequencies and modes of damped structures are presented. The equation of motion of the structure is transformed into a generalized eigenvalue system Ax = A.Bx in which A and B are symmetric and non positive definite matrices. The block Lanczos method generates a sequence of blocks of orthonormalized vectors and, by a projection on these vectors, we obtain a reduced eigensystem Tz = AZ where T is an unsymmetric block-tridiagonal matrix whose eigenvalues are approximations of those of the initial system. This method provides extraction of multiple frequencies with their multiplicities and, for undamped structures, computation of the frequencies around a given value.
Downloads
References
[BAT 76] BATHE K.J. et WILSON E.L., Numerical Methods in Finite Element Analysis
Prentice-Hall, 1976.
[BAU 86] BAUCHAU O.A., "A solution of the eigenproblem for undamped gyroscopic
systems with the Lanczos algorithm," International Journal for Numerical
Methods in Engineering, Vol. 23, 1986, pp. 1705-1713.
[BOR 77] BORRI M. et MANTEGAZZA M., "Efficient solution of quadratic eigenproblems
araising in dynamic analysis of structures," Computer Methods in
Applied Mechanics and Engeneering, Vol. 12, 1977, p. 19-31.
[BOS 87] BOSTIC S.W. et FULTON R.E., "Implementation of the Lanczos method for
structural vibration analysis on a parallel computer," Computer & Structures,
Vol. 25, n° 3, 1987, pp. 395-403.
[CAR 82] CARNOY E. et GERADIN M., "On the pratical use of the Lanczos algorithm
in finite element applications to vibration and stability problems," Matrix
Pencil, Lecture Note in Mathematics, edite par B. Kagstrom et A. Rule,
Springer-Verlag, 1982.
[CHA 86] CHANG S.C., "Lanczos algorithm with selective reorthogonalization for
eigenvalue extraction in structural dynamic and stability analysis," Computer
& Structures, Vol. 23, n° 2, 1986, pp. 121-128.
[CHA 88] CHATELIN F., Valeurs propres de matrices, Masson, 1988.
[CHE 88] CHEN H.C. et TAYLOR R.L., "Solution of eigenproblems for damped structural
systems by the Lanczos algorithm," Computer & Structures, Vol. 30, n°
-2, 1988, pp. 151-161.
[CHE 89] CHEN H.C. et TAYLOR R.L., "Using Lanczos vectors and Ritz vectors for
computing dynamic responses," Engineering Computations, Vol. 6, Juin 1989,
pp. 151-157.
[CHO 76] CHOWDHURY P.C., "The truncated Lanczos algorithm for partial solution
of the symmetric eigenproblem," Computer & Structures, Vol. 6, 1976, pp.
446.
[CRA 88] CRAIG R.R. Jr., SU T.J. et KIM H.M., "Use of Lanczos vectors in structural
dynamics," Proceedings of the International Conference on "Spacecraft Structures
and Mechanical Testing", Noordwijk, The Netherlands, 19-21 Octobre
, ESA SP-289, Janvier 1989, pp. 187-192.
[ERI 80] ERICSSON T. et RUHE A., "The spectral transformation Lanczos method
for the numerical solution of large sparse generalized symmetric eigenvalue
problems," Mathematics of Computation, Vol. 35, n° 152, 1980, pp. 1251-
[GER 79] GERADIN M., "Application of the biorthogonal Lanczos algorithm," Energy
Methods in Finite Element Analysis, edite par R. Glowinski, E.Y. Rodin et
O.C. Zienkiewicz, Wiley, 1979, Chapitre 19, pp. 335-348.
[GER 92] GERADIN M. et RIXEN D., Theorie des vibrations - Application a la dynamique
des structures, Masson, 1992.
[GOL 72] GOLUB G.H., UNDERGOOD R. et WILKINSON J.H., "The Lanczos algorithm
for the symmetric Ax= >.Ex problem," Report n° STAN-CS-72-270,
Stanford University, California, 1972.
[GOL 77] GOLUB G.H. et UNDERGOOD R., "The block Lanczos method for computing
eigenvalues," Mathematical Software III, edite par J. Rice, Academic
Press, 1977, pp. 361-377.
[JEN 77] JENNINGS A., Matrix computation for engineers and scientists, Wiley, 1977.
[LAL 92] LALANNE M., BERTHIER P. et DER HAGOPIAN J., Mecanique des vibrations
lineaires, Deuxieme edition, Masson, 1992.
[LAN 50] LANCZOS C., "An iteration method for the solution of the eigenvalue problem
of linear differential and integral operators," Journal of Research of the
National Bureau of Standards, Vol. 45, n° 4, 1950, pp. 255-282.
[MAT 85] MATIHIES H.G., "A subspace Lanczos method for the generalized symmetric
eigenproblem," Computer & Structures, Vol. 21, n° 1-2, 1985, pp. 319-325.
[NOU 83] NOUR-OMID B., PARLETI B.N.et TAYLOR R.L., "Lanczos versus subspace
iteration for solution of eigenvalue problems," International Journal for
Numerical Methods in Engineering, Vol. 19, 1983, pp. 859-871.
[NOU 84] NOUR-OMID B., "Dynamic analysis of structures using Lanczos coordinates,"
Earthquake Engineering and Structural Dynamics, Vol. 12, 1984,
pp. 565-577.
[NOU 85] NOUR-OMID B., "Block Lanczos method for dynamic analysis of structures,"
Earthquake Engineering and Structural Dynamics, Vol. 13, 1985, pp. 271-275.
[NEW 73] NEWMAN M. et PIPANO P., "Fast modal extract in NASTRAN via the
FEER computer program," NASA TM-X-2893, 1973, pp. 485-506.
[OJA 70] OJALVO I.U. et NEWMAN M., "Vibration modes of large structures by an
automatic matrix-reduction method," AIAA Journal, Vol. 8, n° 7, 1970, pp.
--1239.
[OJA 85] OJALVO I.U., "Proper use of Lanczos vectors for large eigenvalue problems,"
Computer & Structures, Vol. 20, n° 1-3, 1985, pp. 115-120.
[PAl 71]
[PAl 72]
[PAl 76]
[PAR 79]
[PAR 80]
[RAM 80]
[RUH 79]
[SCO 79]
[SCO 81]
[SMI 76]
PAIGE C.C., "The computation of eigenvalues and eigenvectors of very large
sparse matrix," Ph.D. Thesis, London University, 1971.
PAIGE C.C., "Computational variants of the Lanczos method for the eigenproblem,"
J. lnst. Maths Applies, Vol. 10, 1972, pp. 373-381.
PAIGE C.C., "Error analysis of the Lanczos algorithm for tridiagonalizing a
symmetric matrix," J. Jnst. Maths Applies, Vol. 18, 1976, pp. 341-349.
PARLETT B.N. et SCOTT D.S., "The Lanczos algorithm with selective orthogonalization,"
Mathematics of Computation, Vol. 33, n° 145, 1979, pp.
-238.
PARLETT B.N., The symmetric eigenvalue problem, Prentice-Hall, 1980.
RAMASWAMY S., "On the effectiveness of the Lanczos method for the
solution of large eigenvalue problems," Journal of Sound and Vibration, Vol.
, n° 3, 1980, pp. 405-418.
RUHE A., "Implementation aspects of band Lanczos algorithms for computation
of eigenvalues of large sparse symmetric matrices," Mathematics of
Computation, Vol. 33, n° 146, 1979, pp. 680--687.
SCOTT D.S., "How to make the Lanczos algorithm converge slowly," Mathematics
of Computation, Vol. 33, n° 145, 1979, pp. 239-247.
SCOTT D.S., "Solving sparse symmetric definite quadratic >.-matrix problems,"
BIT, Vol. 21, 1981, pp. 475-480.
SMITH B.T., BOYLE J.M., DONGARRA J.J., GARBOW B.S., IKEBE Y.,
KLEMA V.C. et MOLER C.B., Matrix eigensystem routines. Eispack guide.
Second edition, Lecture Note in Computer Science, Vol. 6, Springer-Verlag,
[TRA 81] TRAN D.M., "Etude du comportement dynarnique des rotors flexibles," These
de Docteur-Ingenieur, INSA de Lyon, 1981.
[TRA 82] TRAN D.M., "Syst~me Titus : Introduction de Ia methode d'iterations sur
un sous-espace de recherche de valeurs propres et vecteurs propres," Rapport
technique, Framatome, 1982.
[TRA 86] TRAN D.M., "SYSTUS : Introduction de Ia methode sous-espace Lanczos par
bloc pour les probl~mes aux valeurs propres symetriques generalises. Application
au calcul des frequences et modes complexes de structures amorties,"
Rapport technique, Framatome, 1986.
[WEI 83] WEINGARTEN V.I., RAMANATHAN R.K., CHEN C.N., "Lanczos eigenvalue
algorithm for large structures on a minicomputer," Computer & Structures,
Vol. 16, n° 1-4, 1983, pp. 253-257.
[YIU 90] YIU Y.C., "Reduced vector basis for dynamic analysis of large damped structures,"
Report no UCB/SEMM-90/06, University of California Berkeley, 1990.