On the iterative methods for solving linear systems of equations

Authors

  • Laura C. Dutto Department of Mechanical Engineering Concordia University 1455 de Maisonneuve Blvd. W. (C-424) Montreal, Quebec Canada H3G JM8

Keywords:

large and sparse linear systems, non-Hermitian matrices, iterative methods, Petrov-Galerkin methods, Krylov subspace methods, conjugate gradient, like methods, preconditioning

Abstract

The solution of large systems of linear equations is a problem frequently met in numerical calculations, for example, from finite difference or finite element approximations to partial differential equations. The use of direct methods for solving linear systems of equations is limited by both storage requirement and computing time, and in practice, the only alternative is to use iterative algorithms. This paper presents some basic iterative methods, and also a short survey of recent research on this subject, with emphasis on linear systems whose coefficient matrix is non-Hermitian. We briefly discuss the notion of preconditioning, and we give some practical choices for the preconditioning matrix.

 

Downloads

Download data is not yet available.

References

[ARM 56] Arms R.J ., Gates L.D. and Zondek B., "A method of block iteration",

J. Soc. Indust. Appl. Math., 4, 1956, p. 220-229.

[AXE 85]

[AXE 86]

[AXE 84]

[ABI 84]

[BRI 90]

[CHA 89]

[CON 85]

[CON 76]

Axelsson 0., "A survey of preconditioned iterative methods for linear

systems of algebraic equations", BIT, 25, 1985, p. 166-187.

Axelsson 0., "A general incomplete block-matrix factorization method"

Linear Algebra Appl., 74, 1986, p. 179-190.

Axelsson 0. and Barker V.A., Finite Element Solution of Boundary

Value Problems. Theory and Computation, Academic Press, New York,

Axelsson 0., Brinkkemper S. and Il'in V.P., "On some versions of incomplete

block-matrix factorization iterative methods", Linear Algebra

Appl., 58, 1984, p. 3-15.

Bristeau M.-0., Glowinski R., Dutto L., Periaux J. and Rage G.,

"Compressible viscous flow calculations using compatible finite element

approximations", Int. J. Numer. Methods in Fluids, 11, 1990,

p. 719-749.

Chan T.F., Glowinski R., Periaux J. and Widlund 0., eds., Second

International Symposium on Domain Decomposition Methods, SIAM,

Philadelphia, PA, 1989.

Concus P., Golub G.H. and Meurant G., "Block preconditioning for

the conjugate gradient method", SIAM J. Sci. Stat. Comput., 6, 1985,

p. 309-332.

Concus P., Golub G.H. and O'Leary D.P., "A generalized conjugate

gradient method for the numerical solution of elliptic partial differ

ential equations", in Sparse Matrix Computations ( J. R. Bunch and

D. J. Rose, eds.), Academic Press, New York (1976), p. 309-332.

[CRA 55] Craig E.J., "TheN-step iteration procedures", J. Math. Physics, 34,

, p. 64-73.

[CUT 59] Cuthill E.H. and Varga R.S., "A method of normalized block iteration",

J. Assoc. Comput. Mach., 6, 1959, p. 236-244.

[DAH 92] Dahl 0. and Wille S.0., "An ILU preconditioner with coupled node fillin

for iterative solution of the mixed finite element formulation of the

D and 3D Navier-Stokes equations", Int. J. Numer. Methods Fluids,

, 1992, p. 525-544.

[DAZ 92a] D'Azevedo E.F., Forsyth P.A. and Tang W.-P., "Towards a costeffective

ILU preconditioner with high level fill", BIT, 32, 1992, p. 442-

[DAZ 92b] D'Azevedo E.F.,Forsyth P.A. and Tang W.-P., "Ordering methods for

preconditioned conjugate gradient methods applied to unstructured

grid problems", SIAM J. Mat. Anal. and Appl., 13, 1992, p. 944-961.

[DOU 55] Douglas J. Jr., J. Soc. Indust. Appl. Math., 3, 1955, p. 42.

[DUF 86] Duff I.S., Erisman A.M. and Reid J.K., Direct Methods for Sparse

Matrices, Oxford University Press, Oxford, 1986.

[DUF 89] Duff I.S. and Meurant G.A., "The effect of ordering on preconditioned

conjugate gradients", BIT, 29, 1989, p. 635-657.

[DUT 90] Dutto L.C., Etude de preconditionnements p!JUr la resolution, par la

methode des elements finis, des equations de Navier-Stokes pour un

fl.uide compressible, these de doctorat, universite Pierre et Marie Curie

(Paris VI), France, 1990.

[DUT 93] Dutto L.C., "The effect of ordering on preconditioned GMRES algorithm,

for solving the compressible Navier-Stokes equations", Int.

J. Numer. Methods Eng., 36, 1993, p. 457-497.

[EHR 81] Ehrlich L.W., "An ad hoc SOR method", J. Comput. Phys., 44, 1981,

p. 31-45.

[EIS 83] Eisentat S.C., Elman H.C. and Schultz M.H., "Variational iterative

methods for nonsymmetric systems of linear equations", SIAM J. Numer.

Anal., 20, 1983, p. 345-357.

[ELM 86] Elman H.C., Saad Y. and Saylor P., "A hybrid Chebyshev Krylov subspace

algorithm for solving nonsymmetric systems of linear equations",

SIAM J. Sci. Stat. Comput., 7, 1986, p. 840-855.

[FAB 84] Faber V. and Manteuffel T., "Necessary and sufficient conditions for

the existence of a conjugate gradient method", SIAM J. Numer. Anal.,

, 1984, p. 352-362.

[FAB 87] Faber V. and Manteuffel T., "Orthogonal error methods", SIAM J. Numer.

Anal., 24, 1987, p. 170-187.

[FLE 76] Fletcher R., "Conjugate gradient methods for indefinite systems", in

Numerical Analysis Dundee 1975 (G. A. Watson, ed.), Lecture Notes

in Mathematics 506, Springer, Berlin (1976), p. 73-89.

[FRE 90] Freund R.W., "On conjugate gradient type methods and polynomial

preconditioners for a class of complex non-Hermitian matrices", Numer.

Math., 57, 1990, p. 285-312.

[FRE 92] Freund R.W., "Conjugate gradient-type methods for linear systems

with complex symmetric coefficient matrices", SIAM J. Sci. Stat. Comput.,

, 1992, p. 425-448.

[FGN 92] Freund R.W., Golub G.H. and Nachtigal N.M., "Iterative solution of

linear systems", Acta Numerica, 1992.

[FRE 91) Freund R.W. and Nachtigal N.M., "QMR: a quasi-minimal residual

method for non-Hermitian linear systems", Numer. Math., 60, 1991,

p. 315-339.

[GAU 23] Gauss G.F., Brief an Gerling Werke, 9, 1823, p. 278; translated by

G. E. Forsythe under the title "Gauss to Gerling on Relaxation", Math.

Tables Aids Comput., 5, 1954, p. 255.

[GLO 88] Glowinski R., Golub G.H., Meurant G.A. and Periaux J., eds., First

International Symposium on Domain Decomposition Methods for Partial

Differential Equations, SIAM, Philadelphia, PA, 1988.

[GOL 89] Golub G.H. and O'Leary D.P., "Some history of de conjugate gradient

and Lanczos algorithms: 1948-1976", SIAM Review, 31, 1989, p. 50-

[GUS 78) Gustafsson I., "A class of first order factorization methods", BIT, 18,

, p. 142-156.

[HAB 61] Habetler G.J. and Wachspress E.L., "Symmetric successive overrelaxation

in solving diffusion difference equations", Math. Comput., 15,

, p. 356-362.

[HEA 91] Heath M.T., Ng E. and Peyton B.W., "Parallel algorithms for sparse

linear systems", SIAM Review, 33, 1991, p. 420-460.

[HES 52] Hestenes M.R. and Stiefel E., "Methods of conjugate gradients for

solving linear systems", J. Res. Nat. Bur. Stand., 49, 1952, p. 409-

[JAC 45] Jacobi C.G.J., Astr:. Nachr., 22, 1845, p. 297.

[LAN 50] Lanczos C., "An iteration method for the solution of the eigenvalue

problem of linear differential and integral operators", J. Res. Mat h.

Bur. Stand., 45, 1950, p. 255-282.

[LAN 52] Lanczos C., "Solution of systems of linear equations by minimized

iterations", J. Res. Math. Bur. Stand., 49, 1952, p. 33-53.

[LAS 87] Lascaux P. and Theodor R., Analyse numerique matricielle appliquee

a /'art de l'ingenieur, Tome 2, Masson, Paris, 1987.

[MEl 77] Meijerink J .A. and van der Vorst H.A., "An iterative solution method

for linear systems of which the coefficient matrix is a symmetrix Mmatrix",

Math. Comput., 31, 1977, p. 148-162.

[NAC 91] Nachtigal N.M., A look-ahead variant of the Lanczos algorithm and its

application to the quasi-minimal residual method for non-Hermitian

linear systems, Ph.D dissertation, Massachusetts Institute of Technology,

Cambridge, 1991.

[NAC 92] Nachtigal N.M., Reddy S.C. and Treffethen L.N., "How fast are nonsymmetric

matrix iterations?", SIAM J. Matrix Anal. Appl., 1992; also

in Num. Anal. Rep., 90-2, MIT, 1990.

[ORT 85] Ortega J .M. and Voigt R.G., "Solution of partial differential equatins

on vector and parallel computers", SIAM Review, 27, 1985, p. 149-240.

[PEA 55] Peaceman D.W. and Rachford H.H. Jr., "The numerical solution of

parabolic and elliptic differential equations", J. Soc. Indust. Appl.

Math., 3, 1955, p. 28-41.

[REI 71) Reid J .K., "On the method of conjugate gradients for the solution

of large sparse systems of linear equations", in Large Sparse Sets of

Linear Equations (J. K. Reid, ed.), Academic Press, New York (1971),

p. 231-253.

[SAA 81] Saad Y., "Krylov subspace methods for solving large unsymmetric linear

systems", Math. Comput., 37, 1981, p. 105-126.

[SAA 82] Saad Y., "The Lanczos biorthogonalization algorithm and other oblique

projection methods for solving large unsymmetric systems", SIAM

J. Numer. Anal., 19, 1982, p. 485-506.

[SAA 89) Saad Y., "Krylov subspace methods on supercomputers", SIAM J. Sci.

Stat. Comput., 10, 1989, p. 1200-1232.

[SAA 90] Saad Y., "SPARSKIT: a basic tool kit for sparse matrix computations",

Technical Report 90.20, RIACS, NASA Ames Research Center, 1990.

[SAA 85) Saad Y. and Schultz M.H., "Conjugate gradient-like algorithms for

solving nonsymmetric linear systems", Math. Comput., 44, 1985, p. 417-

[SAA 86] Saad Y. and Schultz M.H., "GMRES: a Generalized Minimal Residual

algorithm for solving nonsymmetric linear systems", SIAM J. Sci. Stat.

Comput., 7, 1986, p. 856-869.

[SEI 74) Seidel 1., Abh. "Math.-Phys. Kl. Bayerische Akad. Wiss. Miinchen, 11

(III), 1874, p. 81.

[SHE 55) Sheldon J., Math. Tables Aids Comput., 9, 1955, p. 101.

[SON 89) Sonneveld P., "CGS,, a fast Lanczos type solver for nonsymmetric linear

systems", SIAM J. Sci. Stat. Comput., 10, 1989, p. 36-52.

[SOU 46) Southwell R.V., Relaxation Methods in Theoretical Physics, Oxford

Univ. Press, New York, 1946.

[STO 83) Stoer J., "Solution of large systems of equations by conjugate gradient

type methods", in Mathematical Programming- The State of the Art

(A. Bachem, M. Grotschel and B. Korte, eds.), Springer, Berlin (1983),

p. 540-565.

[VAN 86) van der Sluis A. and van der Vorst H.A., "The rate of convergence of

conjugate gradients", Numer. Math., 48, 1986, p. 543-560.

[VAN 92) van der Vorst H.A., "Bi-CGSTAB: a fast and smoothly converging

variant of Bi-CG for the solution of nonsymmetric linear systems",

SIAM J. Sci. Stat. Comput., 13, 1992, p. 631-644.

[VIN 76) Vinsome P.K.W., "Orthomin, an iterative method for solving sparse

sets of simultaneous linear equations", Proceeding of the Fourth Symposium on Reservoir Simulation, Society of Petroleum Engineers of

AIME (1976), p. 149-159.

[WAT 81] Watts J.W. III, "A conjugate gradient truncated direct method for the

iterative solution of the reservoir simulation presure equation", Society

of Petrolum Engineer J., 21, 1981, p. 345-353.

[WIN 80] Winther R., "Some superlinear convergence results for the conjugate

gradient method' SIAM J. Numer. Anal., 17, 1980, p. 14-17.

[YOU 71] Young D.M., Iterarive Solution of Large Linear Systems, Academic

Press, New York, 1971.

[YOU 89] Young D.M., "A historical overview of iterarive methods", Camp.

Phys. Comm., 53, 1989, p. 1-17.

[YOU 80] Young D.M. and Jea K.C., "Generalized conjugate gradient acceleration

of nonsymmetrizable iterative methods", Linear Algebra Appl.,

, 1980, p. 159-194.

[YSE 86] Yserentant H., "On the multi-level splitting of finite element spaces",

Numer. Math., 49, 1986, p. 379-412.

[ZLA 82] Zlatev Z., "Use of iterative refinement in the solution of sparse linear

systems", SIAM J. Numer. Anal., 19, 1982, p. 381-399.

Downloads

Published

1993-04-25

How to Cite

Dutto, L. C. . (1993). On the iterative methods for solving linear systems of equations. European Journal of Computational Mechanics, 2(4), 423–448. Retrieved from https://journals.riverpublishers.com/index.php/EJCM/article/view/3643

Issue

Section

Original Article